مطالعه عملکرد زیستی صدف (Anodonta cygnea) در کاهش آفت کش ارگانوفسفره کلریپریفوس از محیط آبی

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 کارشناسی‌ارشد بوم‌شناسی آبزیان شیلاتی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 نویسنده مسئول، دانشیار دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشجوی دکتری بوم‌شناسی آبزیان شیلاتی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

4 دانشیار دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در دنیای امروزه استفاده گسترده بشر از آفت‌کشها جهت کنترل آفات کشاورزی و ورود آنهابه منابع آبی یک عامل تهدیدکننده برای اکوسیستم‌های آبی محسوب می‌شود. در این مطالعه کاهش آفت‌کش ارگانوفسفره کلریپریفوس ازمحیط آبی باروش تصفیه زیستی به وسیله صدف Anodonta cygnea به عنوان یک فیلترکننده زیستی بررسی گردید. درطی یک بازه زمانی 12 روزه، سه تیمار با سه تکرار درمواجهه با سه غلظت متفاوت آفت کش 30، 20 و 15 میلی‌گرم در لیتر قرار گرفتند. شاخص‌های میزان غلظت سم، میزان جذب‌نور، pH آب و نرخ فیلتراسیون صدف جهت تعیین کاهش غلظت سم اندازه‌گیری شدند. در پایان دوره آزمایش میزان غلظت آفت‌کش به ترتیب برای تیمارهای با غلظت 30، 20 و 15 میلی‌گرم در لیتر آفت‌کش 1/019 ± ،153/0 ± 6/4 ،3 ± 0/133 با درصد راندمان کاهش 67/36 درصد، 83/76 درصد، 100 درصد، میزان جذب نور 001/00/44 ± ، ± 0/002 011/0، 000/0 ± 000/0 با درصد راندمان کاهش 04/38 درصد، 75/77 درصد، 100 درصد و میزان pH، 53/7، 99/7، 6/8 برآرود گردید. نرخ فیلتراسیون برای تیمارهای با غلظت 30 و 20 میلی‌گرم در لیتر آفت‌کش روندی کاهشی و برای تیمار با غلظت 15 میلی‌گرم در لیتر آفت‌کش روندی افزایشی داشت. بین تغییرات غلظت سم، میران جذب نور و نرخ فیلتراسیون در آغاز و پایان آزمایش تفاوت معنی داری یافت شد0 /05)˂p). گونه Anodonta cygnea به عنوان یک پالایشگر زیستی مناسب جهت حذف آفتکش کلرپیریفوس در سیستمهای تصفیه‌ی پساب‌های کشاورزی یا محیط‌های آبی طبیعی آلوده شده پیشنهاد می‌گردد با این وجود مطالعات بیشتری در این زمینه لازم می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on biological function of oyster (Anodonta cygnea) in reducing chlorpyrifos organophosphate pesticide from aquatic environment

نویسندگان [English]

  • Mahboobeh Mirzaei 1
  • Arash Javanshir khoei 2
  • Kiadokht Rezaei 3
  • Soheil Eagderi 4
1 M.Sc. of Aquatic Ecology of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
2 Corresponding Author, Associate Prof., Faculty of Natural Resources, University of Tehran, Karaj, Iran.
3 Ph.D. Student, Aquatic Ecology of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
4 Associate Prof., Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

In today's world, the extensive human use of pesticides to control agricultural pests and their entry into water resources is a threat to aquatic ecosystems. In this study, Reduction of Chloriprifos organophosphate pesticide from aqueous environment was investigated by bioremediation method by Anodonta cygnea oyster as a bio filter. During a period of twelve days, three treatments with three replications were exposed to three different concentrations of pesticide, 30, 20, 15 mg / l. And indices of toxin concentration, light absorption, water pH and oyster filtration rate were measured to determine the reduction of toxin concentration. At the end of the experiment, the amount of pesticide concentration for treatments with concentrations of 30, 20 and 15 mg/L pesticides were 19 ± 0.1, 4.6 ± 0.153, 3 ± 0.133, with a reduction efficiency of 36.67%, 76.83%, 100% respectively. Percent, Light absorption rate 0.44 ± 0.001, 0.011 ± 0.002, 0.000 ± 0.000 with a reduction efficiency of 38.04%, 77.75%, 100% and a pH of 7.53, 99/7, 6/8 were estimated. Filtration rate for treatments with concentrations of 30 and 20 mg/L pesticides decreased and for treatment with 15 mg/L pesticide concentration had an increasing trend. There was a significant difference between changes in toxin concentration, light absorption miran and filtration rate at the beginning and end of the experiment (P˂0.05). Anodonta cygnea species as a suitable bioremediator for the removal of chlorpyrifos pesticides in agricultural wastewater treatment systems or contaminated natural water environments is recommended, however, further studies are needed in this area.

کلیدواژه‌ها [English]

  • Contamination
  • Pesticide
  • Chlorophyll
  • Anodonta cygnea
  • Bioremediation
1.Osman, K.A., and Al-Rehiayani, S. 2003. Risk assessment of pesticide to human and the environment. Saudi J. Biol. Sci. 10: 81-106.
2.Cortina-Puig, M., Istamboulie, G., Marty, J.L., and Noguer, T. 2010. Analysis of pesticide mixtures using intelligent biosensors. INTECH Open Access Publisher.
3.Gebremariam, S.Y., Beutel, M.W., Yonge, D.R., Flury, M., and Harsh, J.B. 2012. Adsorption and desorption of chlorpyrifos to soils and sediments. In: Reviews of environmental contamination and toxicology. Springer, pp. 123-175.
4.Maleki, A., Moradi, F., Shahmoradi, B.,  Rezaee, R., and Lee, S.M. 2019. The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. Journal of Molecular Liquids.
5.Mary John, E., and Manakulam Shaike, J. 2015. Chlorpyrifos pollution and remediation. Springer International Publishing Switzerland. Environ. Chem. Lett. 13: 269-291.
6.Sharbidre, A.A., Metkari, V., and Patode, P. 2011. Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues ofguppy fish, Poecilia reticulata. Pest Biochem. Physiol.101: 2. 132-141.
7.Johnson, W.W., and Finley, M.T. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory. United States Fish and Wildlife Service Resource Publication, pp. 1965-78.
8.Francisco Claudio, F., Allen, L., Marcos Antônio, A., and Ronaldo, F. 2013. Use of Microwave-Assisted Oxidation for Removal of the Pesticide Chlorpyrifos from Aqueous Media. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 12p.        
9.Martinez, R.S., Di Marzio, W.D., and Sáenz, M.E. 2015. Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae. Ecotoxicology, 24: 1. 45-54.
10.Shahian, H., and Shykhlooei, H. 2017. Evalution of Diazinon and Cholorpyriphos residuse in lebanens red apple tree in miyandoab coid stores using by HPLC-PDA. Health food, 7: 2.
11.Schulz, R., and Leiss, M. 1999. A field study of the effects of agriculturally derived insecticide input on stream invertebrate dynamics. Aquat. Toxicol. 46: 155-176.
12.Jamali, S., and Banihashemi, Z. 2012. Investigate the causes of the decline of the plane trees in Shiraz. Ir. J. Planet Pathology, 48: 1. 123-8.
13.Shahidi, A., and Tarkashvand, A. 2015. Investigation of wastewater treatment methods. 11p.
14.Nethaji, S., Sivasamy, A., andMandal, A. 2013. Preparation and characterization of corncob activated carbon coated with nano sized magnetite particles for the removal of Cr(VI). J. Bioresource. Technol. 134: 94-100.
15.Beone, G.M., Cenci, R., and Lodigiani, P. 2003. Metal concentrationsin Unio Pictorum mancus (Mollusca),Lamellibranchia from of 12 Northern Italian lakes in Relation to their trophic level. J. Limnol, 62: 2. 121-138.
16.Opiyo, K., Rawson, Ch, Gagnon, M.M., and Saputra, I. 2021. Biomarkers in Rock Oysters (Saccostrea mordax) in Response to Organophosphate Pesticides. Journal of Marine Sciences, 26: 1. 7-16.
17.Zhou, Q., Zhang, J., Fu, J., Shi, J., and Jiang, G. 2008. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606: 135-50.
18.Hedge, L., Knott, N., and Johnston, E. 2009. Dredging related metal bioaccumulation in oysters. Marine Pollution Bulletin, 58: 6. 832-40.
19.Simberloff, D. 2012. Sustainability of biodiversity under global changes, with particular reference to biological invasions. In: Weinstein, M.P., Turner, R.E., editors. Sustainability science: The emerging paradigm and the urban environment. New York. Springe,pp. 139-157.
20.Mahmoodi, M., Safahiea, A., Nikpoor, Y., and Ganemi, K. 2011. Study on the possibility of using Barbatia helbeingii bivalve as a bio remeditation of PHAs in Bushehr costs. Ecology, 58: 141-148.
21.Rosa, C.I., Costa, R., Goncalves, F., and Pereira, J.L. 2014. Bioremediation metal- rich effiuents: Could the invasive bivalve Corbicula fluminaea work as a biofiltre. Journal of environmental quality, 43: 1535-1545.
22.Teresa, J., and Naim, O.A. 1995.review of the effects of heavy metalson freshwater mussels. Ecotoxicology,4: 341-362.
23.Liu, G.X., Chai, X.L., Shao, Y.Q., and Wu, H.X. 2012. Histological alternation of blood clam Tegillarca granosa in acute copper, zinc, lead and cadmium exposures. Adv. Mater. Res. pp: 518-523: 422-425.
24.Venugopal, N.V.S., Sumalatha, B., and Bonthula, S. 2012. Spectrophotometric determination of Malathion (an organophosphorous insecticide) with Potassium bromate. Eurasian Journal of Analytical Chemistry, 8: 131-135.
25.Jørgensen, C.B. 1990. Bivalves filter feeding. Hydrodynamics, Bioenergetics. Physiology and ecology, Olsen and Olsen, 140p.
26.Rahnama, R., Javanshir, A., and Mashinchian, A. 2010. The effects of lead bioaccumulation on filtration rate of zebra mussel (Dreissena polymorpha) from Anzali wetland–Caspian Sea. Toxicol. Environ. Chem. 92: 107-114.
27.Oliveira, P., Gabriel, L., Barboza, A., Brancod, V., Figueiredod, N., and Carvalhod, C. 2018. Effects of microplastics and mercury in the freshwater bivalve Corbicula Fluminea, Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicology and Environmental Safety, 164: 155-163.
28.Javanshir Khoei, A., and Jandaghi, M. 2007. Eveluation of the ability of Anodonta sygnea bivalve in reducing nitrate and phosphate concentration in both open and closed systems. 10th  National Conference on Environmental Health, 33p.
29.Kraak, M.H.S., Lavy, D., and Davids, C. 1994. Chronic exotoxicity of copper and cadmium to the zebra mussel Dreissena polymorpha. Arch. Environ. Contam. Toxicol. 23: 363-369.
30.John, E.M., Rebello, S., and Jisha, M.S. 2014. Chlorpyrifos degradation using bacterial consortium obtained from soil. Int J Environ Eng–IJEE, 1: 4. 91-94.
31.Anwar, S., Liaquat, F., Khan, Q.M., Khalid, Z.M., and Iqbal, S. 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard Mater. 168: 1. 400-405.
32.Liu, G.X., Shu, M.A., Chai , X.L., Shao, Y.Q., Wu, H.X., Sun, C.S., and Yang, S.B. 2014. Effect of Chronic on Filtration Rate, Sex Ratio, and Gonad Development of a Bivalve Species. Bull. Environ. Contam. Toxicol. 92: 71-74.
33.Rau´l, L.M., and Rafaela, E.L. 2007. Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: Effect of pH, temperature and metals on filtration rate. Environmental Pollution. 149: 209-215.
34.Loayza, R., Rafaela, M., and Letts, E. 2007. Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: Effect of pH. temperature and metals on filtration rate Environmental Pollution, 149: 209-215.
35.Watling, H. 1981. The effects of metals on mollusc filtering rates. Transactions of the Royal Society of South Africa, 44: 3. 441-451.
36.Momit, T., Lazarevit Pašti, T., Bogdanovit, U., Vodnik, V., Mrakovit, A., RakoIevit, Z., Vladimir, B.P., and Vasit, V. 2016. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods. Hindawi Publishing Corporation Journal of Nanomaterials Volume, 11p.
37.Jafarzade, N., Javanshir Kkoei, A., Poorbahger, H., and Rezaei, K. 2017. Apllying physical and biolojical treatment metohos to remove dizinon and malation pesticides in water. Fisheries, Journal of natural resources, 70: 327-336.
38.Racke, K.D., Steele, K P., Yoder, R.N., Dick, W.A., and Avidov, E. 1996. Factors effecting the hydrolytic degradation of chlorpyrifos in soil. J. Agric. Food Chem. 44: 1582-1592.
39.Usharani, K., Muthukumar, M., and Kadirvelu, K. 2012. Effect of pH on the Degradation of Aqueous Organophosphate (methylparathion) in Wastewater by OzonationInt. J. Environ. 6: 2. 557-564.
40.Assalin, M.R., Rosa, M.A., and Duran, N. 2004. Remediation of Kraft effluent by ozonation: effect of applied ozone concentration and initial pH. Ozone Sci. Eng. 26: 317-322.
41.Ye, M.M., Chen, Z.L., Liu, X.W., Ben, Y., and Shen, J.M. 2009. Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzen. J. Hazard Mater. 167: 1021-1027.