اثر پرورش ماهی قزل‏‌آلای رنگین‌‏کمان (Oncorhynchus mykiss) در قفس شناور بر ساختار جمعیت فیتوپلانکتونی در منطقه عباس‌‏آباد، حوضه جنوبی دریای خزر.

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، گروه شیلات، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران و گروه مطالعات محیطی، دریاچه زریبار، پژوهشکده کردستان‌شناسی، دانشگاه کردستان، سنندج، ایران.

2 گروه شیلات، دانشکده منابع‎طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران.

3 بخش آبزی پروری، پژوهشکده‎ اکولوژی دریای خزر، مؤسسه تحقیقات علوم شیلاتی، ساری، ایران

4 گروه شیلات، دانشکده منابع‎طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

چکیده

این تحقیق با هدف تعیین اثر فعالیت پرورش ماهی قزل‎آلای رنگین کمان در قفس شناور بر توزیع و ساختار جمعیت فیتوپلانکتونی منطقه عباس‎آباد در حوضه جنوبی دریای خزر طراحی گردید. بدین‎ منظور نمونه‎‎های آب و فیتوپلانکتون از فواصل 5، 50، 100 و 1000 متری از قفس‎های پرورش ماهی طی 4 دوره شامل دی‎ماه 1393 (قبل از پرورش)، اسفند و اردیبهشت‎ماه (دوره پرورش) و مردادماه 1394 (بعد از دوره پرورش) جمع‎آوری شدند. نتایج آنالیز عوامل فیزیکوشیمیایی آب نشان داد که بیشتر عوامل اندازه‏گیری شده فقط طی دوره‌های مختلف نمونه‏برداری دارای تفاوت معنی‏دار بودند (05/0>P). در این بررسی، در مجموع 42 گروه‏ فیتوپلانکتون متعلق به پنج شاخه با غالبیت شاخه‏‏ی باسیلاریوفیتا (44/76%) شناسایی گردید. نتایج نشان داد که فراوانی بیشتر نمونه‏های غالب فیتوپلانکتونی طی دوره‏های مختلف نمونه‏برداری دارای اختلاف معنی‏دار بود (05/0>P)، اما این اختلاف معنی‏دار بین ایستگاه‏های مختلف فقط برای تعداد کمی از گونه‏های مورد مطالعه مشاهده گردید. همچنین نتایج حاصل از تعیین اثر عوامل محیطی با استفاده از آزمون CCA روی فراوانی جمعیت باسیلاریوفیتا تأثیر کم و همبستگی مثبت با کدورت و نیتروژن کل را نشان داد، در حالی‏که اثر دما و آمونیوم روی فراوانی آن منفی بود. به‎نظر می‌رسد فعالیت پرورش ماهی قزل‏‏آلای رنگین‎کمان در قفس در منطقه عباس‎آباد، به‎دلیل تراکم پائین ماهی، کوتاه بودن طول دوره‎ی پرورش و سرعت زیاد جریان‎های آبی بر بعضی عوامل کیفی و غلظت مواد مغذی آب تأثیر جزئی داشته اما اثر قابل ملاحظه‎ای روی جوامع فیتوپلانکتونی محیط اطراف قفس نداشت و تغییرات مشاهده شده در ساختار فیتوپلانکتونی بیشتر با تغییرات فصلی مرتبط بود.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of rainbow trout culture in floating cage on structure of phytoplankton community in the Abbas Abad area, southern basin of the Caspian Sea

نویسندگان [English]

  • erfan karimian 1
  • Mohammad Zakeri 2
  • Seyed Mohammad Vahid Farabi 3
  • Mahsa Haghi 4
  • Preeta Kochanian 4
1 Corresponding Author, Dept. of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran and Dept. of Environmental Studies, Zrebar Lake, Kurdistan Studies Institute, Sanandaj, Iran.
2 Dept. of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3 . Dept. of Aquaculture, Caspian Sea Ecology Research, Fisheries Science Research Institute, Sari, Iran
4 Dept. of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
چکیده [English]

This study was designed to determine the effect of rainbow trout culture in floating cage on the distribution and structure of Phytoplankton community in the Abbas Abad area, southern basin of the Caspian Sea. For this purpose, water and phytoplankton samples were collected by a distances of 5, 50, 100 and 1000 m from the cage culture during December 2014 (pre cage), March and April (production period) and August 2015 (post cage). The results of physicochemical factors of water showed that most of the measured parameters had significant differences only among different sampling periods (P<0.05). In this study, 42 taxa of phytoplankton belonging to five phyla (with the dominance of Bacillariophyta) were identified. The results showed that the abundance of most dominant phytoplankton samples had a significant difference during different periods (P<0.05), but this significant difference between different stations was observed for few species studied only. Also, the results of determining the effect of environmental factors using CCA test on the Bacillariophyta abundance showed a minor impact and a positive correlation with turbidity and total nitrogen, While the effect of temperature and ammonium on its abundance was negative. It seems that the rainbow trout cage culture in the Abbas Abad region had a minor impact on water quality factors and nutrients concentration probably due to short duration of cage culture activity and high velocity currents, but no remarkable effect on phytoplankton structure in the vicinity of fish cages, so that the observed changes were more associated with seasonal fluctuant.

کلیدواژه‌ها [English]

  • Cage culture
  • rainbow trout
  • environmental factors
  • phytoplankton
  • Caspian Sea
1.FAO. 2020. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations. Contributing to food security and nutrition for all. 206p.
2.Grigorakis, K., and Rigos, G. 2011. Aquaculture effect on environmental and public welfare- The case of Mediterranean mariculture. Chemosphere. 855: 899-919.
3.Barbier, E.B. 2012. Progress and challenges in valuing coastal and marine ecosystem services. Review of Environmental Economics and Policy.6: 1. 1-19.
4.Iran Fisheries Organization. Office of Development and Management of Fishing Ports. 2015. Preparation of criteria for the establishment of fish cage culture and support piers and the introduction of suitable sites for the development of fish farming in cages on the coasts of Mazandaran. Gilan and Golestan provinces. Report of the Marine Department of Mazandaran Province. 26p.
5.Study of the main framework of aquaculture development in marine cages in Iran. 2004. Report of REFA-Norway Company. Translation: Research Unit of Saz Abapardazan Consulting Engineering Company. Publishing Unit of Saz Abab Pardazan Consulting Engineering Company. Volume 1 and II.
6.Caruso, G. 2014. Effects of aquaculture activities on microbial assemblages. Oceanography 2. e107.
7.Gonzalez-Silvera, D., Izquierdo-Gomez, D., Fernandez-Gonzalez, V., Martínez-López, F.J., López-Jiménez, J.A., and Sanchez-Jerez, P. 2015. Mediterranean fouling communities assimilate the organic matter derived from coastal fish farms as a new trophic resource. Marine Pollution Bulletin. 91: 45-53.
8.Pierre, A.C., Yuan-Chao, A.H.,Chaolum, A.C., and Yang, C.C. 2015. Integrated assessment of sustainable marine cage culture through system dynamics modeling. Ecological Modelling. 299: 140-146.
9.Uglem, I., Karlsen, O., Sanchez-Jerez, P., and Sæther, B.S. 2014. Impacts ofwild fishes attracted to open-cage salmonid farms in Norway. Aquaculture Environmental Interaction. 6: 91-103.
10.Beveridge, M. 2008. Cage Aquaculture (3rd edn). John Wiley e Sons. Oxford. 380p.
11.Farabi, S.M.V. 2010. Hydrology. Hydrobiology and Environmental pollutants in southern basin of the Caspian Sea.  Iranian Fisheries Science Research Institute. Caspian Institute of Ecology, 87p.
12.Azevedo, D.J.S., Barbosa, J.E.L.,Gomes, W.I.A., Porto, D.E., and Molozzi, J. 2015. Diversity measures in macroinvertebrate and zooplankton communities related to the trophic status of subtropical reservoirs: Contradictory or complementary responses? Ecological Indicator. 50: 135-149.
13.Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M., and Dunn, J.R. 2008. Improved estimates of upper-ocean warming and multi-decadal sealevel rise. Nature. 453: 1090-1093.
14.Garmendia, M., Borja, A., Franco, J., and Revilla, M. 2013. Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives. Marine Pollution Bulletin. 66: 7-16.
15.Naz, M., and Turkmen, M. 2005. Phytoplankton Biomass and Species Composition of Lake Golbasi (HatayTurkey). Turkish Journal of Biology. 29: 49-56.
16.Wetzel, R.G., and Likens, H. 1991. Limnological analysis. Springer-Verlag. 391p.
17.APHA (American Public Health Association). 2005. Standard Methodsfor The Examination of water and wastewater. 21th ed. American Public Health Association. Washington. DC. 1550p.
18.Sourina, A. 1978. Phytoplankton Manual. Monograph of Oceanographic Methology. Paris. UNESCO. 337p.
19.Newell, G.E., and Newell, R.C. 1977. Marine plankton: a practical guide. Hutchinson. London. 244p.
20.Habit, R.N., and Penkow, R. 1976.Algaeno Floranderstosee Vebgusta Fishers Verlaygiena. 493p.
21.Findlay, D.L., Podemski, C.L., Susan, E., and Kasian, M. 2009. Aquaculture impacts on the algal and bacterial communities in a small boreal forest lake. Canadian Journal of Fisheries and Aquatic Sciences. 66: 11. 1936-1948.
22.Nasrollahzadeh Saravi, H., Bin, H., Din, Z., Foong, S.Y., and Makhlough, A.2008. Trophic status of the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity. Journal of Continental Shelf Research. 28: 1153-1165.
23.Nasrollahzadeh Saravi, H., Najafpour, Sh., Yoonesipour, H., Olomi, Y., Vahedi, F., Nasrollahtabar, A., Elyasi, F., Norozian, M., Delinad, Gh., Mokaremi, A., Makhlogh, A., Golaqaei, M., and Kardar, M.R. 2011. Investigation of physicochemical properties of water in the southern Caspian Sea. Iran Fisheries Research Institute. Code: 88037-8801-12-76-2.
24.Tahami, F.S., Mazlan, A.G., Negarestan, H., Najafpour, Sh., Lotfi, W.W.M., and Najafpour, G.D. 2012. Phytoplankton combination in the Southern part of Caspian Sea. World Applied Science Journal. 16: 1. 99-105.
25.Van de Poll, W.H., Boute, P.G., Rozema, P.D., Buma, A.G.J., Kulk, G., and Rijkenberg, M.J.A. 2015. Sea surface temperature control of taxon specificphytoplankton production along an oligotrophic gradient in the Mediterranean Sea. Marine Chemistry. 177: 3. 536-544.
26.Kamenir, Y., Dubinsky, Z., Alster, A., and Zohary, T. 2007. Stable patterns insize structure of a phytoplankton species of Lake Kinneret. Hydrobiologica.578: 1. 79-86.
27.Modica, A., Scilipoti, D., La Torre, R., Manganaro, A., and Sara, G. 2006. The effect of mariculture facilities on biochemical features of suspended organic matter (southern Tyrrhenian. Mediterranean). Estuarine. Coastal and Shelf Science. 66: 177-184.
28.Rensel, J.E.J., Kiefer, D.A., Forster, J.R.M., Woodruff, D.L., and Evans, N.R. 2007. Offshore finfish mariculture in the Strait of Juan de Fuca. Bulletinof the Fisheries Research Agency.19: 113-129.
29.Maleri, M. 2011. Effects of rainbow trout (Oncorhynchus mykiss) cage culture on Western Cape irrigation reservoirs. Doctor of Philosophy in the Faculty of AgriSciences at Stellenbosch University. 296p.
30.Price, C.S., and Morris, J.A. 2013. Marine Cage Culture and the Environment. Center for Coastal Fisheries and Habitat Research. 158p.
31.Demirak, A., Balci, A., and Tufekci, M. 2006. Environmental impact of the marine aquaculture in Gulluk Bay. Turkey. Environmental Monitoring and Assessment. 123: 1-12.
32.Bagheri, S., Mashhor, M., Makaremi, M., Mirzajani, A., Babaei, H., Negarestan, H., and Wan Waznah, W. 2010. Distribution and composition of phytoplankton in the southwestern Caspian Sea during 20012002. a comparison with previous surveys. World Journal Fish and Marine Sciences. 2: 416-426.
33.Bagheri, S., Sabkara, J., and Niermann, U. 2011. State of Mnemiopsis leidyi and mesozooplankton in the south-western Caspian Sea (1996-2010). In: Jaspers, C (eds). Mnemiopsis leidyi in European waters where are they and what do we know? 10 October 2011. University of Denmark. Copenhagen. pp. 1-15.
34.Pitta, P., Tsapakis, M., Apostolaki, E.T., Tsagaraki, T., Holmer, M., and Karakassis, I. 2009. Ghost nutrients’ from fish farms are transferred upthe food web by phytoplankton grazers. Marine Ecology Progress Series.374: 1-6.
35.Sara, G., Lo Martire, M., Sanfilippo, M., Pulicano, G., Cortese, G., and Mazzola, A. 2011. Impacts of marine aquaculture at large spatial scales: evidences fromn and p catchment loadingand phytoplankton biomass. Marine Environmental Research. 71: 5. 317-324.
36.Sarà, G. 2007a. A meta-analysis on the ecological effects of aquaculture on the water column: dissolved nutrients. Marine Environmental Research.63: 390-408.
37.Sarà, G. 2007b. Ecological effects of aquaculture on living and non-living suspended fractions of the water column: a meta-analysis. Water Research. 41: 3187-3200.
38.Sarà, G. 2007c. Aquaculture effects on some physical and chemical properties of the water column: a meta-analysis. Chemistry and Ecology. 23: 251-262.
39.Mirto, S., Bianchelli, S., Krzelj, M., Gambi, C., Pusceddu, A., Scopa, M., Holmer, M., and Danovaro, R. 2010. Meiofauna response to fish farming in seagrass and soft-bottom sediments of the Mediterranean Sea. Marine Environmental Research. 69: 38-47.
40.Holmer, M., Hansen, P.K., Joseph, I.K., Borg, A., and Schembri, P.J. 2008. Monitoring of Environmental Impacts of Marine Aquaculture. Aquaculture in the Ecosystem. Chapter. 2: 47-85.
41.Borges, P.A.F., Train, S., Dias, J.D., and Bonecker, C.C. 2010. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia. 649: 279-291.
42.Sanz-Lázaro, C., Belando, M.D., Marín-Guirao, L., Navarrete-Mier, F., and Marín, A. 2011. Relationship between sedimentation rates and benthicimpact on Maërl beds derived from fish farming in the Mediterranean. Marine Environmental Research. 71: 22-30.
43.WHO. 1999. Toxic Cyanobacteria in water: A guide to their public health consequences. monitoring and management. World Health Organization. Geneva.
44.Godrijan, J., Maric, D., Tomazic, I., Precali, R., and Pfannkuchen, M. 2013. Seasonal phytoplankton dynamics in the coastal waters of the north-eastern Adriatic Sea. Journal of Sea Research. 77: 32-44.
45.Humborg, C., Smedberg, E., and Blomqvist, S. 2004. Nutrient variations in boreal and subarctic Swedish rivers: Landscape control of land-seafluxes. Limnology and Oceanography. 49: 1871-1883.
46.Kaeriyama, H., Katsuki, E., Otsubo, M., Yamada, M., Ichimi, K., Tada, K., and Harrison, P.J. 2011. Effects of temperature and irradiance on growth of strains belonging to seven Skeletonema species isolated from Dokai Bay. southern Japan. Eur. J. Phycol. 46: 113-124.
47.Roohi, A. 2009. Population dynamic and effects of the invasive species Ctenophore. Mnemiopsis leidyi in the Southern Caspian Sea. University Sains Malaysia.
48.Sawsan, M.A., Ahmed, M.M., and Samiha, M.G. 2014. Variability of spatial and temporal distribution of zooplankton communities at Matrouh beaches. south-eastern Mediterranean Sea. Egypt. Egyptian Journal of Aquatic Research. 40: 283-290.
49.Borges, P.A.F., Train, S., Dias, J.D., and Bonecker, C.C. 2010. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia. 649: 279-291.
50.Slejic, S., Marasovic, I., Vidjak, O., Kušpilic, G., and Nincevic Gladan, Ž. 2011. Effects of cage fish farming on phytoplankton community structure. biomass and primary production in an aquaculture area in the middle Adriatic Sea. Aquaculture research. 42: 1393-1405.
51.Dias, J.D. 2008. Impacto da pisciculturaemtanques-redesobreaestruturada comunidade zooplanctônicaem um reservatório subtropical. Brasil. Master Thesis. UniversidadeEstadual de Maringá. Maringá. Brazil. 40p.
52.Vizzini, S., Savona, B., Caruso, M., Savona, A., and Mazzola, A. 2005. Analysis of stable carbon and nitrogen isotopes as a tool for assessing the environmental impact of aquaculture: a case study from the western Mediterranean. Aquaculture International. 13: 157-165.
53.Huang, Y.C.A., Hsieh, H.J., Huang, S.C., Meng, P.J., Chen, Y.S., Keshavmurthy, S., Nozawa, Y., and Chen, C.A. 2011. Nutrient enrichment caused by marine cage culture and its influence on subtropical coral communities in turbid waters. Marine Ecology Progress. Ser. 423: 83-93.
54.Harrison, W.G., Perry, T., and Li, W.K.W. 2005. Ecosystem indicators of water quality. Part I. Plankton biomass. primary production and nutrient demand. 59-82 in B.T. Hargrave. editor. Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry. Volume 5M. Springer-Verlag. Berlin.
55.Apostolakia, E.A., Tsagarakia, T., Tsapakisa, M., and Karakassis, I. 2007. Fish farming impact on sediments and macro fauna associated with sea grass meadows in the Mediterranean. Estuarine. Coastal and Shelf Science. 75: 3. 408-416.
56.Aksu, M., Kaymakci-Basaran, A., and Egemen, O. 2010. Longterm monitoring of the impact of a capture-based bluefin tuna aquaculture on water column nutrient levels in the Eastern Aegean Sea. Turkey. Environmental Monitoring and Assessment. 171: 681-688.
57.Kideys, A.E., Roohi, A., Develi, E.E., Melin, F., and Beare, D. 2008. Increased chlorophyll a levels in the southern Caspian Sea. following an invasion of Jellyfish. Research Letters in Ecology. pp. 1-4.
58.Lewandowska, A.M., Hillebrand, H., Lengfellner, K., and Sommer, U. 2014. Temperature effects on phytoplankton diversity-The zooplankton link. Journal of Sea Research. 85: 359-364.
59.Tang, E.P.Y. 1996. Why do dinoflagellates have lower growth rates? J. Phycol. 32: 80-84.
60.Soylu, E.N., and Gonulol, A.2010. Functional classification and composition of phytoplankton in Liman Lake. Turkish Journal of Fisheries and Aquatic Sciences. 10: 53-60.
61.Black, K.D. 2001. Environmental impacts of aquaculture. Sheffield Academic Press and CRC Press. Sheffield.
62.Macleod, C.K., Crawford, M., and Moltschaniwsky, A. 2004. Assessment of long term change in sediment condition after organic enrichment: defining recovery. Marine Pollution Bulletin. 49: 79-88.
63.Kalantzi, I., and Karakassis, I. 2006. Benthic impacts of fish farming:meta-analysis of community and geochemical data. Marine Pollution Bulletin. 52: 484-493.
64.Plavan, G., Nicoara, M., Apetroaiei, N., and Plavan, O. 2012. The effect of fish cage aquaculture on the profound macrozoobenthos in the oligo-mesotrophic reservoir Izvoru Muntelui Bicaz (Romania). Carpathian Journalof Earth and Environmental Sciences.7: 2. 145-148.
65.www.azerbaijan.az/_Geography/_Caspian/_caspian_e.html?caspian_05.
66.Zaker, N.H., Ghaffari, P., Jamshidi, S., and Nouranian, M. 2011. Currents on the Southern Continental Shelf of the Caspian Sea off Babolsar. Mazandaran. Iran. Journal of coastal Research.64: 1989-1997.
67.Venturoti, G.P., Veronez, A.C., Salla, R.V., and Gomes, L.C. 2014. Phosphorus. total ammonia nitrogen and chlorophyll a from fish cages in a tropical lake (Lake Palminhas. Espirito Santo. Brazil). Aquaculture Research. pp. 1-15.
68.Baula, I.U., Azanza, R.V., Fukuyo, Y., and Siringan, F.P. 2011. Dinoflagellate cyst composition. abundance and horizontal distribution in Bolinao. Pangasinan. Northern Philippines. Harmful Algae. 11: 33-44.