انتوژنی ژن thrβ در تخم ماهی آزاد دریای خزر (Salmo caspius)

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار پژوهشی مرکز تحقیقات ماهیان سردآبی کشور، تنکابن، ایران

2 استادیار پژوهشی مرکز تحقیقات ژنتیک و اصلاح نژاد ماهیان سردآبی، یاسوج، ایران

3 استادیار مؤسسه تحقیقات علوم شیلاتی، مرکز تحقیقات ذخایر آبزیان آب‌های داخلی، استان گلستان، گرگان، ایران.

4 استادیار پژوهشی مؤسسه تحقیقات علوم شیلاتی کشور، تهران، ایران

5 استادیار پژوهشی انستیتو تحقیقات بین‌المللی ماهیان خاویاری، رشت، ایران

6 استادیار پژوهشی مرکز تحقیقات ماهیان سردآبی کشور، تنکابن، ایران

7 کارشناس‌ارشد مرکز تحقیقات ماهیان سردآبی کشور، تنکابن، ایران.

چکیده

ماهی آزاد دریای خزر (Salmo caspius)، (Kessler 1877) گونه ی مهاجر رودرو از ماهی قزل آلای قهوه ای است. در مهره داران انتقال هورمون های تیروئیدی (T4 و T3) از طریق اتصال به گیرنده های تیروئیدی (thrα وthrβ) انجام می شود. در تخم های در حال تکامل بیان گیرنده های هورمون تیروئیدی در بازه های زمانی مختلف گزارش شده است. در این مطالعه انتوژنی بیان ژن thrβ در تخم ماهی آزاد دریای خزر مورد بررسی قرار گرفت. نمونه برداری از تخمک ها قبل از لقاح، تخم ها بلافاصله بعد از لقاح، 24 و 48 ساعت بعد از لقاح، مرحله چشم زدگی، زمان تفریخ و جذب کامل کیسه زرده انجام شد در حالی که در معرض غلظت های مختلف هورمون تیروکسین (0 (بدون افزودن هورمون، شاهد)، 25/0، 5/0 و 75/0 میلی گرم در لیتر) نیز قرار گرفته بودند. نتیجه تجزیه و تحلیل های آماری روند افزایشی در بیان ژن thrb را در طول زمان نشان دادند. ارتباط معکوسی بین افزایش غلظت های مختلف هورمون تیروکسین با درصد چشم زدگی و تفریخ تخم های ماهی آزاد دریای خزر مشاهده شد. به شکل خلاصه با توجه به مشاهده عدم اثرگذاری مثبت استفاده از حمام هورمون تیروکسین با غلظت های به کار رفته در این مطالعه به منظور افزایش کارایی تکثیر، کاربرد آن در غلظت های به کار رفته توصیه نمی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ontogeny of the thrβ in the eggs of Caspian trout (Salmo caspius)

نویسندگان [English]

  • Salman Malakpour Kolbadinezhad 1
  • Sajad Nazari 2
  • Abdolazim Fazel 3
  • Mahdi Golshan 4
  • Shirin Jamshidi 5
  • Saltanat Najjar Lashgari 6
  • Mohammad Taghi Azhir 7
1 Corresponding Author, Research Assistant Prof., Coldwater Fisheries Research Center (CFRC), Tonekabon, Iran.
2 Research Assistant Prof., Cold-Water Fishes Genetic and Breeding Research Center, Yasouj, Iran.
3 Assistant Prof., Iranian Fisheries Sciences Research Institute, Inland Waters Aquatics Resources Research Center, Golestan Province, Gorgan, Iran
4 Research Assistant Prof., Iranian Fisheries Research Institute, Tehran, Iran.
5 Research Assistant Prof., International Research Institute of Sturgeon fish, Rasht, Iran
6 Research Assistant Prof., Coldwater Fisheries Research Center (CFRC), Tonekabon, Iran.
7 M.Sc., Coldwater Fisheries Research Center (CFRC), Tonekabon, Iran.
چکیده [English]

Caspian trout, Salmo caspius, Kessler 1877 is an anadromous form of brown trout. In vertebrates, the functional receptors of THs, including thyroid hormone receptors (TRs) (thrα, thrβ). In developing fish eggs, the expression of THRs has been reported in different time periods. The ontogeny of the thrβ in the eggs of Caspian trout (Salmo caspius) has been investigated in the present study. The sampling of ova was done before and post fertilization, 24 and 48 h post fertilization, eyeing stage, hatching and CYA while being exposed for 1 h to various thyroxin hormone concentrations including 0 (control, without hormone), 0.25, 0.5and 0.75 mgL-1. The statistical analysis showed increased gene expression of thrβ during the development period. An inverse relationship between hormone concentration with eyeing and hatching percentage were detected in the eggs. In summary using thyroxin hormone by applied doses to achieve better fertilization efficiency not recommended.

کلیدواژه‌ها [English]

  • Caspian trout egg
  • thrβ
  • Fertilization
1.Jalali, M. A., & Mojazi Amiri, B. (2009). Threatened fishes of the world: Salmo trutta caspius (Kessler, 1877) (Salmoniforms: Salmonidae). Environmental Biology and Fisheries. 86 (3), 375-376.
2.Kalbassi, M. R., Dorafshan, S., Pourkazemi, M., & Amiri, B. M. (2009). Triploidy induction in the Caspian salmon salmo trutta caspius by heat shock. Journal of Applied Ichthyology. 25, 104-107.
3.Najafpour, B., Dorafshan, S., Paykan Heyrati, F., & Power, D. M. (2019). Embryonic development of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877). Journal of Applied Ichthyology. 1-7.
4.Sayad Bourani, M., Abtahi, B., Bahmani, M., Kazemi, R., Djandian, S., Dakhir Rouhi, J., & Amiri, A. (2005). Effect of weight on osmotic regulation ability in Caspian trout fry (Salmo trutta caspius). Iranian Journal of Fisheries Sciences, 14 (4), 81-96. [In Persian]
5.Bahramian, B. (2015). The final report of the project on “the procurement of the Caspian salmon Salmo trutta caspius from the rivers of Mazandaran province and their propagation and rearing the production of 100,000 fry until release to the Caspian Sea. Project approved number 89194-8917-12-14-12. Iranian Fisheries Sciences Research Institute- Tonkabon Coldwater Fish Research Center. p31. [In Persian]
6.Abdolmalaki, Sh. et al. (2015). The Caspian trout (Salmo trutta caspius) broodstocks supplying in the south western of the Caspian Sea (Guilan province). Project approved number: 8917-12-73-14-89193. Iranian Journal of Fisheries Sciences. p30 [In Persian]
7.Sarvi, K., Niksirat, H., Mojazi Amiri, B., Mirtorabi, S. M., Rafiee, G. R., & Bakhtiyari, M. (2006). Cryopreservation of semen from the endangered Caspian brown trout (Salmo trutta caspius). Aquaculture. 256, 564-569.
8.Bern, H. A. (1992). The development of the role of hormones in development-A double remembrance. Endocrinology. 131, 2037-2038.
9.Campinho, M. A., Galay-Burgos, M., Sweeney, G. E., & Power, D. M. (2010). Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea
bream (Sparus aurata, Linnaeus). General Comparative Endocrinology. 165 (2), 181-194.
10.Habibi, H. R., Nelson, E. R., & Allan, E. R. O. (2012). New insights into thyroid hormone function and modulation of reproduction in goldfish. General Comparative Endocrinology. 175, 19-26.
11.Shkil, F., Siomava, N., Voronezhskaya, E., & Diogo, R. (2019). Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path). Scientific Report. 9, 5413.
12.Power, D. M., Llewellyn, L., Faustino, M., Nowell, M. A., Bjaornsson, B. T., Einarsdottir, I. E., Canario, A. V. M., & Sweeney, G. E. (2001). Thyroid hormones in growth and development of fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 130 (4), 447-459.
13.Blanton, M. L., & Specker, J. L. (2007). The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Fish and Its Role in Fish Development and Reproduction. Critical Reviews in Toxicology. 37, 97-115.
14.Campinho, M. A. (2019). Teleost Metamorphosis: The Role of Thyroid Hormone. Frontier Endocrinology (Lausanne). 14, 10: 383.
15.Abdollahpour, H., & Falahatkar, B. (2018). The role and application of thyroid hormones in fish physiology and aquaculture. Advanced Aquaculture Sciences Journal. 2, 19-38.
16.Chang, J., Wang, M., Gui, W., Zhao, Y., Yu, L., & Zhu, G. (2012). Changes in thyroid hormone levels during zebrafish development. Zoological Science. 29 (3), 181-184.
17.Brown, C. L., Urbinati, E. C., Zhang, W. M., Brown, S. B., & McComb-Kobza, M. (2014). Maternal Thyroid and Glucocorticoid Hormone Interactions in Larval Fish Development, and Their Applications in Aquaculture. Review in Fisheries Science Aquaculture. 22, 207-220.
18.Ruuskanen, S., & Hsu, B. Y. (2018). Maternal Thyroid Hormones: An Unexplored Mechanism Underlying Maternal Effects in an Ecological Framework. Physiological and Biochemical Zoology. 91 (3), 904-916.
19.Sharma, P., & Patiño, R. (2013). Regulation of gonadal sex ratios and pubertal development by the thyroid endocrine system in zebrafish (Danio rerio). General Comparative Endocrinology. 184, 111-119.
20.Deal, C. K., & Volkoff, H (2020). The Role of the Thyroid Axis in Fish. Frontier Endocrinology. 11, 596585. doi: 10.3389/fendo.2020.596585.
21.Glasauer, S. M., & Neuhauss, S. C. (2014). Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics.
22.Kawakami, Y., Tanda, M., Adachi, S., & Yamauchi, K. (2003). cDNA cloning of thyroid hormone receptor betas from the conger eel, Conger myriaster. General Comparative Endocrinology. 131, 232-40.
23.Kawakami, Y., Tanda, M., Adachi, S., & Yamauchi, K. (2003). Characterization of thyroid hormone receptor alpha and beta in the metamorphosing Japanese conger eel, Conger myriaster. General Comparative Endocrinology. 132, 321-32.
24.Lazcano, I., & Orozco, A. (2018) Revisiting available knowledge on teleostean thyroid hormone receptors. General Comparative Endocrinology. 265, 128-32. doi: 10.1016/j.ygcen. 2018. 03.022.
25.Yen, P. M., & Chin, W. W. (1994). New advances in understanding the molecular mechanisms of thyroid hormone action. Trends Endocrinology Metabolism. 5, 65-72.
26.Shibata, Y., Tanizaki, Y., & Shi, Y. (2020). Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci. 10, 46.
27.Liu, Y. W., & Chan, W. K. (2002). Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation, 70 (1), 36-45.
28.Walpita, C. N., Van der Geyten, S., Rurangwa, E., & Darras, V. M. (2007). The effect of 3,5,3'-triiodothyronine supplementation on zebrafish (Danio rerio) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors. General Comparative Endocrinology. 152, 206-14.
29.Yamano, K., Araki, K., Sekikawa, K., & Inui Y. (1994). Cloning of thyroid hormone receptor genes expressed in metamorphosing flounder. Developmental Genetics. 15, 378-82.
30.Yamano, K., & Miwa, S. (1998). Differential gene expression of thyroid hormone receptor alpha and beta in fish development. General Comparative Endocrinology. 109, 75-85. 
31.Yu, J., Fu, Y., & Shi, Z. (2017). Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). Fish Physiology and Biochemistry. 43, 321-336.
32.Essner, J. J., Breuer, J. J., Essner, R. D., Fahrenkrug, S. C., & Hackett, P. B. (1997). The zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and can function in transcriptional repression. Differentiation, 62 (3), 107-117.
33.Liu, Y. W., Lo, L. J., & Chan, W. K. (2000). Temporal expression and T3 induction of thyroid hormone receptors a1 and b1 during early embryonic and larval development in zebrafish, Danio rerio. Molecular and Cellular Endocrinology. 159, 187e95. http:// dx. doi.org/10.1016/S0303-7207(99)00193-8.
34.Takayama, S., Hostick, U., Haendel, M., Eisen, J., & Darimont, B. (2008). An F-domain introduced by alternative splicing regulates activity of the zebrafish thyroid hormone receptor alpha. General Comparative Endocrinology. 155, 176-89.
35.Liu, W. Y., & Chan, W. K. (2002). Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation. 70, 36-45.
36.Marelli, F., Carra, S., Agostini, M., Cotelli, F., Peeters, R., Chatterjee, K., & Persani, L. (2016). Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action. Molecular and Cellular Endocrinolog. 424, 102-17.
37.Jones, I., Rogers, S. A., Kille, P., & Sweeney, G. E. (2002). Molecular cloning and expression of thyroid hormone receptor alpha during salmonid development. General Comparative Endocrinology. 125, 226e35.
38.Raine, J. C., Cameron, C., Vijayan, M. M., Lamarre, J., & Leatherland, J. F. (2004). The effect of elevated oocyte triiodothyronine content on development of rainbow trout embryos and expression of mRNA encoding for thyroid hormone receptors. Journal of Fish Biology.
65 (1), 206-226.
39.Quesada-García A., Valdehita, A., Kropf, C., Casanova-Nakayama, A., Segner, H., & Navas, J. M. (2014). Thyroid signaling in immune organs and cells of the teleost fish rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology. 38 (1), 166-74.
40.Marchand, O., Safi, R., Escriva, H., Van Rompaey, E., Prunet, P., & Laudet, V. (2001). Molecular cloning and characterization of thyroid hormone receptors in teleost fish. Journal of Molecular Endocrinology. 26, 51e65.
41.Manchado, M., Infante, C., Rebordinos, L., & Cañavate, J. P. (2009.) Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. General Comparative Endocrinology. 160, 139e47. http://dx.doi.org/10. 1016/ j.ygcen.2008.11.001.
42.Galay-Burgos, M., Power, D. M., Llewellyn, L., & Sweeney, G. E. (2008). Thyroid hormone receptor expression during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus). Molecular and Cellular Endocrinology. 281, 56-63.
43.Harada, M., Yoshinaga, T., Ojima, D., & Iwata, M. (2008). cDNA cloning and expression analysis of thyroid hormone receptor in the coho salmon Oncorhynchus kisutch during smoltification. General Comparative Endocrinology. 155, 658-67.
44.Kawakami, Y., Nozaki, J., Seoka, M., Kumai, H., & Ohta, H. (2008). Characterization of thyroid hormones and thyroid hormone receptors during the early development of Pacific bluefin tuna (Thunnus orientalis). General Comparative Endocrinology. 155, 597-606.
45.Nowell, M. A., Power, D. M., Canario, A. V., Llewellyn, L., & Sweeney, G. E. (2001). Characterization of a sea bream (Sparus aurata) thyroid hormone receptor-beta clone expressed during embryonic and larval development. General Comparative Endocrinology. 123, 80-9.
46.Kawakami, Y., Nomura, K., Ohta, H., & Tanaka, H. (2013). Characterization of thyroid hormone receptors during early development of the Japanese eel (Anguilla japonica). General Comparative Endocrinology. 194, 300-10.
47.Tang, X., Liu, X., Zhang, Y., Zhu, P., & Lin, H. (2008). Molecular cloning, tissue distribution and expression profiles of thyroid hormone receptors during embryogenesis in orange-spotted grouper (Epinephelus coioides). General Comparative Endocrinology. 159, 117-24.
48.Abdollahpour, H., Falahatkar, B., Efatpanah, I., Meknatkhah, B., & Van Der Kraak, G. (2019). Hormonal and physiological changes in Sterlet sturgeon Acipenser ruthenus treated with thyroxine. Aquaculture. 507, 293-300.
49.Alinezhad, S., Abdollahpour, H., Jafari, N., & Falahatkar, B. (2020). Effects of thyroxine immersion on Sterlet sturgeon (Acipenser ruthenus) embryos and larvae: Variations in thyroid hormone levels during development. Aquaculture. 519, 734-745.
50.Akbari, P., freidouni, M. S., & akhlaghi, M. (2015). The effect of levothyroxine sodium hormone on percentage of hatching and survival rate and the early growth stage of Oncorhynchus mykiss larvae. Journal of Animal Research (Iranian Journal of Biology), 28 (2), 146-153. [In Persian]
51.Zimmer, A. M., Wright, P. A., & Wood, C. M. (2017). Ammonia and urea handling by early life stages of fishes. Journal of Experimental Biology. 220, 3843-3855.
52.Malakpour Kolbadinezhad, S., Coimbra, J., & Wilson, J. M. (2018). Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Frontiers Physiology. 9, 761.
53.Rozen, S., & Skaletsk, Y. H. (2000). “Primer3 on the WWW for general users and for biologist programmers”, in Bioinformatics Methods and Protocols, Eds. Misener S, Krawetz SA. Humana Press, Totowa New Jersey. 365-386.
54.Raine, J. C., & Leatherland, J. F. (2003). Trafficking of L-triiodothyronine between ovarian fluid and oocytes of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology, B 136, 267-274. https://doi.org/10. 1016/S1096-4959(03)00203-3.
55.Raine, J. C., Takemura, A., & Leatherland, J. F. (2001). Assessment of thyroid function in adult medaka (Oryzias latipes) and juvenile rainbow trout (Oncorhynchus mykiss) using immunostaining methods. Journal of Experimental Zoology. 290, 366-378.
56.Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. Journal of Experimental Biology. 212, 2303-2312.
57.Jamili, S. (2004). The final report of the project “Investigating the effect of thyroxine hormone in predisposing the sex of the female and accelerating the growth and development of the larval eggs of the rainbow trout, grass carp, silver carp and barbell of Caspian Sea. The approved number of the project is 01-0710436000-80. Iranian Fisheries Scientific Journal - Anzali Inland Water Aquaculture Research Institute. p39. [In Persian]
58.Moradian, F., Jamili, Sh., Bahmani, M., Toloui, M. H., & Mohammadi, G. H. (2004). The effect of thyroxine on the number of hatched eggs of phytophagous fish Hypophthalmichthys molitrix. Iranian Fisheries Scientific Journal. 12 (3), 172-167. [In Persian]
59.Lam, T. J., & Sharma, R. (1985). Effects of salinity and thyroxine on larval survival, growth and development in the carp, Cyprinus carpio. Aquaculture. 44, 201-212.
60.Lam, T. J., & Loy, G. L. (1985). Effect of l-thyroxine on ovarian development and gestation in the viviparous guppy, Poecilia reticulata. General Comparative Endocrinology. 60 (2), 324-330.
61.Lam, T. J., Juario, J. V., & Banno, J. E. (1985). Effect of thyroxine on growth and development in post-yolk-sac larvae of milkfish, Chanos chanos. Aquaculture. 46 (3), 179-184.
62.Tagawa, M., & Hirano, T. (1987). Presence of thyroxine in eggs and changes in its content during early development of chum salmon, Onchorhynchus keta. General Comparative Endocrinology. 68, 129-135.
63.Dales, S., & Hoar, W. S. (1954). Effects of thyroxine and thiourea on the early development of chum salmon (Onchorhynchus keta). Canadian Journal of Zoology. 32, 244-251.
64.Nacario, J. F. (1983). The effect of thyroxine on the larvae and fry of Sarotherodon niloticus L. Tilapia nilotica. Aquaculture. 34, 73-83.
65.Reddy, P. K., & Lam, T. J. (1992). Effect of thyroid hormones on the morphogenesis and growth of larvae and fry of telescopic-eye black goldfish, Carassius auratus. Aquaculture. 107, 383-394.
66.Rania, O. B., El-Gamal, A. E., El-Mezayen, M. M., El-Greisy, Z. A., & Sheha, M. A. (2021). Role of exogenous thyroxin hormone on eggs, thyroid gland development and growth performance of the monosex Nile tilapia, Oreochromis niloticus Larvae. Egyptian Journal of Aquatic Biology and Fisheries. 25 (4), 253-269.
67.Woodhead, A. D. (1966). Effects of thyoid drugs on the larvae of the brown trout, Salmo trutta. Journal of. Zoology. (Lond.), 149, 394-413.
68.Filby, A. L., & Tyler, C. R. (2007). Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental specific expression of their mRNA transcripts in fathead minnow (Pimephales promelas). General Comparative Endocrinology. 150, 151-163.
69.Darras, V. M., Van Herck, S. L. J., Heijlen, M., & DeGroef, B. (2011). Thyroid hormone receptors in two model species for vertebrate embryonic development: chicken and zebrafish. Journal of Thyroid Research. 402320, 1-8.