پایش و نظارت مجازی ترالرهای صنعتی در شمال خلیج فارس با استفاده از مدل سازی داده های VMS

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 دانش‌آموخته دکتری شیلات- تولید و بهره‌برداری، صید، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران.

2 نویسنده مسئول، استادیار گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

3 استاد گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

4 دانشیار گروه مهندسی برق و الکترونیک، دانشکده فنی و مهندسی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

تحقیق حاضر با هدف مدل‌سازی داده‌های VMS مخابره شده از ترالر‌های صید صنعتی ماهی یال‌اسبی در آب‌های استان هرمزگان در طول سال‌های 98-1396 انجام شد. برای این منظور اطلاعات فعالیت 8 فروند ترالر کلاس کیش از سازمان شیلات ایران تهیه شد که شامل 58904 سیگنال دریافتی می‌شد. پس از طبقه‌بندی و بارگزاری داده‌ها در نرم‌افزار R و تهیه پایگاه داده بر اساس زبان کوئری، 13/50 درصد سیگنال‌های دریافتی به دلایل مختلف دچار خطا بودند و برای پردازش و مدل‌سازی فاقد کیفیت لازم تشخیص داده شدند. براساس سیگنال‌های دریافتی صحیح تعداد سفرهای دریایی (منجر به صید) برای هر شناور تعیین و نقشه مسیر حرکت شناورها ترسیم شد. جهت ترسیم نقشه‌های مکانی پراکنش تلاش صیادی، ابتدا فرایند درون‌یابی داده‌های VMS با استفاده از روش اصلاح‌شده کاتمل-روم انجام شد و سپس نقاط صید بر اساس دامنه تعیین شدة سرعت ترال‌کشی (2-8 کیلومتر بر ساعت) شناسایی و نقشه‌های شدت تلاش صیادی رسم گردید. نقشه‌های پراکنش تلاش صیادی نشان داد که در سال‌های 96 و 98 به نسبت سال 97 پراکندگی مکانی صید محدودتر بوده اما تراکم تلاش صیادی و شدت ترال‌کشی در طول این زمان‌ها یکسان بوده و در قسمت شرق جزیره تنب بزرگ بیشترین تلاش صید رخ داده است. مدل‌سازی داده‌های VMS در قالب تحقیق حاضر برای اولین بار است که در آب‌های دریایی ایران انجام می‌شود و توسعه این رویکرد می‌تواند در بخش نظارت و پایش شناورهای فعال در دریا و شناسایی تخطی آن‌ها به بخش اجرایی بسیار کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Virtual monitoring and surveillance of Industrial trawlers in the northern Persian Gulf using VMS data modeling

نویسندگان [English]

  • Ayoob Solaimani 1
  • Moslem Daliri 2
  • Ehsan Kamrani 3
  • Shahram Golzari-Hormozi 4
1 Ph.D. Graduate of Fisheries, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran.
2 Corresponding Author, Assistant Prof., Dept. of Fisheries, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
3 . Professor, Dept. of Fisheries, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran.
4 Associate Prof., Dept. of Electrical and Computer Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran
چکیده [English]

This study was aimed to modeling VMS data of industrial trawlers of Cutlassfish in the northern Persian Gulf (Hormozgan) between 2017 to 2019. A total of 58904 received VMS signal were provided (for 8 Kish class trawlers) from the Iranian Fisheries Organization (IFO). After arranging and loading data in R software, a database was constructed by using Structured Query Language (SQL). During the data quality review process, 50.13 % of the signals were recognized and deleted as error signals. Thereafter, the number of fishing cruises were estimated for the trawlers and their route maps were prepared. For Mapping the fishing effort and trawling intensity: (1) interpolation of VMS data was performed by using the Catmull–Rom modified technique and (2) trawling was located based on the range of towing speed (2-8 km/h). Fishing effort maps revealed that spatial distribution of towing in 2017 and 2019 have been more limited compared to 2018. Against, trawling intensity is the same in this period and the east of Greater Tunb Island is hotspot. Modelling of VMS data is distinctive feature of the present paper which has been conducted for the first time in Iranian marine waters. Therefore, our results could be helpful to promote monitoring and surveillance of fisheries activities in the Persian Gulf region.

کلیدواژه‌ها [English]

  • Fishing technology
  • Sustainable fisheries management
  • Trawl
  • Ecosystem-based approach
  • Persian Gulf
1.Pikitch, E. K., Santora, C., Babcock, E. A., Bakun, A., Bonfil, R., Conover, D. O., Dayton, P., Doukakis, P., Fluharty, D., & Heneman, B. (2004). Ecosystem-based fishery management. In (Vol. 305, pp. 346-347): American Association for the Advancement of Science.
2.Rose, G. A., & Kulka, D. W. (1999). Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Canadian Journal of Fisheries and Aquatic Sciences, 56 (S1), 118-127.
3.Barange, M. (2018). Fishery and aquaculture statistics. FAO yearbook. Fishery and Aquaculture Statistics= FAO Annuaire. Statistiques des Peches et de l'Aquaculture= FAO Anuario. Estadisticas de Pesca y Acuicultura, I-82.
4.Joo, R., Bertrand, S., Chaigneau, A., & Niquen, M. (2011). Optimization of an artificial neural network for identifying fishing set positions from VMS data: an example from the Peruvian anchovy purse seine fishery. Ecological Modelling,
222 (4), 1048-1059.
5.Russo, T., Parisi, A., & Cataudella, S. (2011). New insights in interpolating fishing tracks from VMS data for different métiers. Fisheries Research,108 (1), 184-194.
6.FAO. (2021). Fishery and Aquaculture Statistics. Global production by production source 1950-2019 (FishstatJ). In: FAO Fisheries Division [online]. Rome. Updated 2021. www.fao.org/ fishery/statistics/software/fishstatj/en.
7.Hashemi, S. A., Taghavimotlagh, S. A., & Doustdar, M. (2020). Estimation of fisheries reference points of the Largehead hairtail, Trishiurus leptures (Teleostei: Trichiuridae) in Iranian waters of Persian Gulf and Oman Sea. Iranian Journal of Ichthyology, 7 (3), 293-299.
8.Szwoch, G. (2019). Combining road network data from openstreetmap with an authoritative database. Journal of Transportation Engineering, Part A: Systems, 145 (2), 04018085.
9.Grothendieck, G. (2012). sqldf: perform SQL selects on R data frames. R package version, 04-64.
10.Lee, J., South, A. B., & Jennings, S. (2010). Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES Journal of Marine Science, 67 (6), 1260-1271.
11.Hintzen, N. T., Bastardie, F., Beare, D., Piet, G. J., Ulrich, C., Deporte, N., Egekvist, J., & Degel, H. (2012). VMStools: open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fisheries Research, 115, 31-43.
12.Russo, T., D'Andrea, L., Parisi, A., & Cataudella, S. (2014). VMSbase: an R-package for VMS and logbook data management and analysis in fisheries ecology. PLoS One, 9 (6), e100195.
13.D'Andrea, L., Russo, T., Parisi, A., & Cataudella, S. (2016). Vmsbase: GUI Tools to Process, Analyze and Plot Fisheries Data.Available: https://github.com/vmsbase/R-vmsbase.
14.Raeisi, H., Hosseini, S., Paighambari, S., Taghavi, S., & Davoodi, R. (2011). Species composition and depth variation of cutlassfish (Trichiurus lepturus L. 1785) trawl bycatch in the fishing grounds of Bushehr waters, Persian Gulf. African Journal of Biotechnology, 10 (76), 17610-17619.
15.Raeisi, H., Hosseini, S. A., & Paighambari, S. Y. (2012). By-catch composition of Cutlassfish (Trichiurus lepturus L. 1785) trawlers in the northern Persian Gulf Journal of Utilization and Cultivation of Aquatics, 1 (1), 46-57.
16.Fouladi-Sabet, A., Paighambari, S. Y., Pouladi, M., Raeisi, H., & Abbaspour-Naderi, A. (2018). Bycatch composition of cutlassfish trawlers during fishing season in Bushehr and Hormozgan, Persian Gulf, Iran. Biodiversitas Journal of Biological Diversity, 19 (6), 275-282.
17.Rees, T. (2003). C-squares, a new spatial indexing system and its applicability to the description of oceanographic datasets. Oceanography, 16 (1), 11-19.
18.Mills, C. M., Townsend, S. E., Jennings, S., Eastwood, P. D., & Houghton, C. A. (2007). Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES Journal of Marine Science, 64 (2), 248-255.
19.Eastwood, P., Mills, C., Aldridge, J., Houghton, C., & Rogers, S. (2007). Human activities in UK offshore waters: an assessment of direct, physical pressure on the seabed. ICES Journal of Marine Science, 64 (3), 453-463.
20.Dinmore, T., Duplisea, D., Rackham, B., Maxwell, D., & Jennings, S. (2003). Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES Journal of Marine Science,
60 (2), 371-380.
21.Witt, M. J., & Godley, B. J. (2007). A step towards seascape scale conservation: using vessel monitoring systems (VMS) to map fishing activity. PLoS One,2 (10), e1111.
22.Chang, S. K., Liu, K. Y., & Song, Y. H. (2010). Distant water fisheries development and vessel monitoring system implementation in Taiwan-History and driving forces. Marine Policy, 34 (3), 541-548.
23.Bordalo-Machado, P. (2006). Fishing effort analysis and its potential to evaluate stock size. Reviews in Fisheries Science, 14 (4), 369-393.
24.Marzuki, M. I., Garello, R., Fablet, R., Kerbaol, V., & Gaspar, P. (2015). Fishing gear recognition from VMS data to identify illegal fishing activities in Indonesia. OCEANS 2015-genova,
25.Daliri, M., & Pramod, G. (2018). Evaluation of Monitoring, Control and surveillance (MCS) in Iran's marine fisheries 1st National Conference on Sustainable Development of the Persian Gulf Bushehr, Iran.
26.Skaar, K., Jørgensen, T., Ulvestad, B., & Engås, A. (2011). Accuracy of VMS data from Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea. ICES Journal of Marine Science, 68 (8), 1615-1620.
27.Huthnance, J. M., Coelho, H., Griffiths, C. R., Knight, P. J., Rees, A. P., Sinha, B., Vangriesheim, A., White, M., & Chatwin, P. G. (2001). Physical structures, advection and mixing in the region of Goban spur. Deep Sea Research Part II: Topical Studies in Oceanography, 48 (14-15), 2979-3021.
28.Poos, J. J., & Rijnsdorp, A. D. (2007). The dynamics of small-scale patchiness of plaice and sole as reflected in the catch rates of the Dutch beam trawl fleet and its implications for the fleet dynamics. Journal of Sea Research,58 (1), 100-112.
29.Smith, M. D., & Wilen, J. E. (2003). Economic impacts of marine reserves: the importance of spatial behavior. Journal of Environmental Economics and Management, 46 (2), 183-206.