استخراج ژلاتین از پسماند فرآوری آبزیان با رویکرد مصارف خوراکی

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 گروه فرآوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، گروه شیلات، دانشکدة منابع طبیعی دانشگاه تهران ، کرج، ایران، دانشیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 نویسنده مسئول، دانشیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 گروه بیوتکنولوژی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

5 گروه فرآوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

6 مرکز تجاری سازی نانوتکنولوژی و پزشکی بازساختی، مرکز نوآوری علوم زیستی لندن، لندن

چکیده

در این طرح نخست به مقدار لازم (150 کیلوگرم) انواع پسماند (ماهی ساردین کامل، باله سفره ماهی، سر ماهی شیر، سر ماهی هوور، سر ماهی گیدر، سر ماهی خاویاری، پوست ماهی خاویاری) از مراکز فرآوری ماهی جمع‌آوری شدند و به آزمایشگاه منتقل گردیدند. در مرحله بعد با آب آشامیدنی شسته شده، در محلول سود با نسبت 1 به 10 به مدت 2 ساعت قرار گرفته، سپس از محلول خارج شده و با آب آشامیدنی بصورت کامل شستشو داده شدند. برای قرار گرفتن در محلول اسید استیک با نسبت 1 به 10 به مدت سه ساعت آماده گردیدند. بعد از پایان شستشو پسماند کاملا با آب آشامیدنی شسته شده، به نسبت 1 به 10 با آب مقطر در ظرف استیل ادغام و درون آون با دمای 60 درجه سلسیوس قرار گرفتند. بعد از 8 ساعت ظرف خارج شده و پسماندها از داخل آن با استفاده از فیلتر و پنبه جدا سازی گردیدند. محلول‌های ژلاتینی با استفاده از حرارت به حجم نصف رسانده شدند و تغلیظ صورت گرفت، سپس محلول تغلیظ شده درون سینی های استیل ریخته و درون خشک کن با دمای 50 درجه سلسیوس قرار گرفتند. در پایان پولک‌های خشک شده ژلاتین به آسیاب منتقل شده و پودر گردیدند. در مرحله نهایی برای آنالیزهای استاندارد به آزمایشگاه استاندارد فرستاده شدند. نتایج بدست آمده بیانگر این بود که ژلاتین-های پوست ماهی خاویاری، سر ماهی خاویاری و سر ماهی گیدر دارای کیفت فیزیکو شیمیایی، و حسی و استاندارد مناسب-تری نسبت به دیگر پسماندها بوده و قابلیت تولید در مقیاس‌های بزرگتری را دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction of gelatin from aquatic processing waste with the approach of edible use

نویسندگان [English]

  • Milad Zaferani Tabrizi 1
  • Seyed Mahdi Ojagh 2
  • Moazameh Kordjazi 3
  • Mazaher Gholipour Malekabadi 4
  • Alireza Alishahi 5
  • Alexander Sifalian 6
1 Dept. of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Associate Prof., Dept of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran ,Dept of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Corresponding Author, Associate Prof., Dept. of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
5 Associate Prof., Dept. of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
6 Nanotechnology and Regenerative Medicine Commercialization Center, the London BioScience Innovation Center, London.
چکیده [English]

First the required amount (150 kg) of waste were collected from fish processing centers and transferred to the laboratory. In the next step, it is washed with tap water, soda solution in a ratio of 1 to 10 for 2 hours, then were removed the solution and prepared to be placed in acetic acid solution in a ratio of 1 to 10 for three hours. After washing, the residue were thoroughly washed with tap water, in a ratio of 1 to 10 combined with distilled water in a steel container and placed inside the oven at a temperature of 60 degrees celsius. After 8 hours, the container was removed and the residue separated from it using a filter and cotton. The gelatin solutions were reduced to half volume using heat and concentrated, then the concentrated solution was poured into steel trays and placed in a dryer at a temperature of 50 degrees celsius. At the end, the dried gelatin flakes were transferred to the mill and powdered. In the final stage, they were sent to the standard laboratory for analyses. The obtained results indicated that the gelatins of sturgeon skin, head of sturgeon, and head of gidder fish have a more suitable physico-chemical, sensory and standard quality than other wastes and have the ability to be produced on a larger scale.

کلیدواژه‌ها [English]

  • Gelatin
  • aquatic waste
  • fish gelatin
1.Bols, N. C., Dayeh, V. R., Lee, L. E. J., & Schirmer, K. (2005). Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. In: Mommsen, P., Moon, T.W. (Eds.), Biochemistry and Molecular Biology of Fishes. 17, 43-84.2.Wolf, K., & Ahne, W. (1982). Fish Cell culture. In Advances in cell culture Vol. 2 (Ed. Maramorosch K), New York Academic Press, 305-328.3.Goswami, M., Yashwanth, B. S., Trudeau V., & Lakra, W. S. (2022). Role and relevance of fish cell lines in advanced in vitro research. Molecular Biology Reports. 49, 2393-2411.4.Bols, N. C., Barlian, A., Chirino-trejo, M., Caldwell, S. J., & Goegan, P. (1994). Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills Journal of Fish Diseases. 17, 601-611.5.Lakra, W. S., Swaminathan, T. R., & Joy, K. P. (2011). Development, characterization, conservation and storage of fish cell lines: A review. Fish Physiology Biochemical. 37 (1), 1-20.6.Villena, A. J. (2003). Applications and needs of fish and shellfish cell culture for disease control in aquaculture Reviews. Fish Biology and Fisheries. 13, 111-140.7.Lee, J., Park, C., & Park, S. C. (2009). Use of folding modulators to
improve heterologous protein production in Escherichia coli Pept. Science. 16, 103-109.8.LaPatra, S. E. (1996). The use of serological techniques for virus surveillance and certification of fish. Annual review Fish Disease. 6, 15-28.9.Menanteau-Ledouble, S., Nöbauer, K., Razzazi-Fazeli, E., & ElMatbouli, M. (2020). Effects of Yersinia ruckeri invasion on the proteome of the Chinook salmon cell line CHSE-214. Sci. Rep. 10 (1), 1-9.10.Lakra, W. S., Swaminathan, T. R., & Joy, K. P. (2011). Development, characterization, conservation and storage of fish cell lines: A review. Fish Physiology Biochemical. 37 (1), 1-20.11.Fryer, J., & Lannan, C. (1994). Three decades of fish cell culture: a current listing of cell lines derived from fishes. Methods in Cell Science, 16 (2), 87-94.12.Kazanchev, A. N. (1981). Fishes of Caspian Sea and its watershed area, Iranian Fisheries Organization, 171 p.13.Dorafshan, S., Kalbasi, M. R., Pourkazemi, M., Mojazi, Amiri B., & Soltan Karimi, S. (2008). Effects of triploidy on the caspian salmon (Salmo trutta caspius) haematology, Fish Physiology and Biochemistery, 34, 195-200.14.Kiabi, B. H., Abdoli, A., & Naderi, M. (1999). Status of the fish fauna in the south Caspian Basin of Iran, Zoology in the Middle East, 18, 57-65.15.Jalali, M. A., & Mojazi Amiri, B. (2009). Threatened fishes of the world: Salmo trutta caspius (Kessler, 1877) (Salmoniforms: Salmonidae). Environmental Biology of Fishes. 86 (3), 375-376.16.Nowrozi, K., Kolbasi, M., Farzaneh, P., Shahzad Fazelia, A., Farghdan, M., Nasimian, A., Ashouri, S., Mohammadi, S., Muradmand, Z., Farhang-Nia, M., (2013). Production and evaluation of epithelial cell line from Caspian Sea salmon fin tissue. (Salmo caspius). Journal of Aquatic Physiology and Biotechnology. 2 (3), 69-85. [In Persian]
17.Ghodsi, Z., Kolbasi, M., Mohabati Mobarez, A., & Farzane, P. (2018). Antibacterial effects of EC-hepcidin1 polypeptide in inhibiting Streptococcus iniae bacteria in primary cell cultures of rainbow trout Oncorhynchus mykiss. Aquatic Physiology and Biotechnology. 7 (4), 8. [In Persian]
18.Ghodsi, Z., Kalbasi, M., Mohabati Mobarez, A., Farzane, P., Beemelmannsd, C., & Amiri Moghaddam, J. (2020). Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). Fish and Shellfish Immunology. 104, 55-61.
19.Wolf, K., & Quimby, M. C. (1976). Primary monolayer culture of fish cells initiated from minced tissues. Tissue Culture Association manual. 2 (4), 445-448.20.McAteer, J. A., & Davis, J. M. (2002). Basic cell culture technique and the maintenance of cell lines. In: Basic Cell Culture. Davis, J. M. (Ed.). (2nd Ed.) The Bath Press, Avon, USA. 135-190.21.Hameed, A. S. et al. (2006). Establishment and characterization of India’s first marine fish cell line (SISK) from the kidney of sea bass (Lates calcarifer). Aquaculture, 257 (1-4), 92-103.22.Gjessing, M. C., Aamelfot, M., Batts, W. N., Benestad, S. L., Dale, O. B., & Thoen, E. (2018). Development and characterization of two cell lines from gills of Atlantic salmon. PLoS ONE 13(2), e0191792.23.Hoover, R. L. (1978). Modulations of the cell surface and the effects on cellular interactions. In Cell–Cell Recognition (Curtis, A. S. G., ed.), pp. 221-240. Symposia for the Society for Experimental Biology XXXII. Cambridge: Cambridge University Press.24.Pisam, M., & Repoch, P. (1976). Redistribution of surface macromolecules in dissociated epithelial cells. Journal of Cell Biology. 71, 907-920.25.Wen, C. M. (2016). Development and characterization of a cell line from tilapia head kidney with melanomacrophage characteristics. Fish & Shellfish Immunology. 49, 442-449.26.Grunow, B., Noglick, S., Kruse, M., & Gebert, M. (2011). Isolation of cells from Atlantic sturgeon Acipense oxyrinchus and optimization of culture conditions. Aquatic Biology, 14, 67-75.27.Rathore, G., T Sood, N., & Swaminathan, R. (2001). Primary cell culture from fish gillsand kidney using fish serum. Indian Journal of Experimental Biology, 39, 936-938.28.Kamalendra, J., Kapoor, S., Sharma, M., Goswami, G., & Lakra, W. S. (2011). Development of primary culture from gills of Tortor (Hamilton-buchanan), Indian Journal Animal Science. 81, 1262-1265.29.Parameswaran, V., Shukla, R., Bhonde, R. R., & Hameed, A. S. S. (2006). Development of a pluripotent ES-like cell Line from Asian sea bass (Lates calcarifer) - an oviparous stem cell line mimicking viviparous ES cells. Marine Biotechnology. 9, 766-75.30.Sohana, K. S., George, K. C., Venkat raviE, G., Ittoop, G., & Paulraj, R. (2009). Development of a Cell Culture System from Gill Explants of the Grouper, Epinephelus malabaricus (Bloch and Shneider) Asian Fisheries Science, 22, 1-6.31.Pasquariello, R., Verdile, N., Pavlovic, R., Panseri, S., Schirmer, K., Brevini,
T. A. L., & Gandolfi, F. (2021). New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout (Oncorhynchus mykiss) Retain Several Properties. Vivo. Cells. 10, 1555.32.Lee, L. E. J., Clemons, J. H., Bechtel, D. G., & Caldwell, S. J. H. (1993). Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol. Toxicol. 9, 279-294.33.Yue, Y., Behra, R., Sigg, L., & Schirmer, K. (2016). Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. Nanotoxicology, 10, 1075-1083.34.O’Neill-Mehlenbacher, A., Kilemade, M., Elliott, A. J., Mothersill, C., & Seymour, C. (2007). Comparison of direct and bystander effects induced by ionizing radiation in eight fish cell lines. International Journal of Radiation Biology, 83 (9), 593-602.35.Gstraunthaler, G., Lindl, T., & van der Valk, J. (2013). A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 65, 791-3.36.Fang, CH. Y., Wu, CH. CH., Fang, CH. L., Chen, W., & Chen, CH. (2017). Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLOS ONE. 1-27.37.Zhou, G. Z., Gui, L., Li, Z. Q., Yuan, X. P., & Zhang, Q. Y. (2008). Establishment of a Chinese sturgeon Acipenser sinensis tail-fin cell line and its susceptibility to frog iridovirus. Journal Fish Biology. 73, 2058-2067.38.Sood, N., Chaudhary, D. K., Pradhan, P. K., Verma, D. K., Swaminathan, T. R., Kushwaha, B., Punia, P., & Jena, J. K. (2015). Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cellular & Developmental Biology – Animal. 51 (8), 787-796.39.Swaminathan, T. R., Raj Kumar, P. M. E., Jency, R., Charan, M. U., Syamkrishnan, V. S., Basheer, N., & Sood, J. K. (2016). A new fish cell line derived from the caudal fin of freshwater angelfish Pterophyllum scalare: development and characterization. Journal of Fish Biology. 142, 81-88.40.Swaminathan, R., Thangaraja, B., Ravia, Ch., Kumara, R., Dharmaratnama, A., Saidmuhammeda, V. B., Pradhanb, P. K., & Soodb, N. (2018). Derivation of two tilapia (Oreochromis niloticus) cell lines for efficient propagation of Tilapia Lake Virus (TiLV). Aquaculture. 492, 206-214.41.Soni, P., Pradhan, P. K., Swaminathan, T. R., & Sood, N. (2018). Development, characterization and application of a new epithelial cell line from caudal fin of Pangasianodon hypophthalmus (Sauvage 1878). Acta Tropica. 182, 215-222.42.Zeng, W., Dong, H., Chen, X., Bergmann, S., Yang, Y., Wei, X., & Tong, G. (2022). Establishment and characterization of a permanent heart cell line from largemouth bass Micropterus salmoides and its application to fish virology and immunology. Aquaculture. 547, 737-427.43.Chen, S. L., Ren, G. C., Sha, Z. X., & Shi, C. Y. (2004). Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Diseases of aquatic organism. 60, 241-246.44.Freshney, R. I. (2000). Culture of Animal Cells, A Manual of Basic Technique, 4th edition, Wiley-Liss, John Wiley and Sons, Inc. Publ. New York, 577 p.45.Chen, S. L., & Qin, Q. W. (2011). Theory and Technology of Fishes Cell Culture, Beijing Science Press, 289 p.46.Ott, T. (2004). Tissue culture of fish cell lines. National Wildlife Fish Health Survey (NWFHS) laboratory procedures manual, Vol 2. In: US Fish & Wildlife Service (Eds.). Handbook of aquatic animal health procedures and protocols, 2nd Edition, Washington DC. 1-16.47.Sayadburani, M., Valipour, A., & Ghasemi, M. (2017). Cultivation of Caspian Sea salmon (Salmo caspius) using Caspian Sea salt water from the fingerling stage to the pre-breeding stage. Journal of Advanced Aquaculture Sciences, 1 (2), 1-14.48.Sayad Borani, M., Maqsoodiyeh, H., Sayad Borani, M., Zahtakash Komleh, A., & Walipour, A. (2011). Investigating the possibility of raising Caspian Sea salmon (Salmo trutta caspius) in different densities using Caspian Sea water Aquaculture Development Magazine. 6 (2), 47-61.49.Fernandez, R. D., Yoshimizu, M., Ezura, Y., & Kimura, T. (1993). Comparative growth response of fish cell lines in different media, temperature and sodium chloride concentrations. Fish Pathology, 28, 27-34.50.Wolf, K., & Mann, J. A. (1980). Poikilotherm vertebrate cell lines and viruses: a current listing for fishes. In Vitro, 16 (2), 168-179.