اثرات مکمل‌سازی پودر قارچ صدفی (Pleurotus ostreatus) در جیره غذایی بچه ماهی تیلاپیای نیل (Oreochromis niloticus) بر عملکرد رشد، ایمنی موکوس پوست و سرم خون و الگوی پروتئینی موکوس

نوع مقاله : مقاله کامل علمی - پژوهشی


1 گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 گروه شیلات، واحد بندرگز، دانشگاه آزاد اسلامی، بندرگز، ایران


در پژوهش حاضر، اثر مکمل سازی پودر قارچ صدفی در جیره بر عملکرد رشد، بازماندگی، شاخص‌های ایمنی سرم، موکوس و الگوی پروتئینی موکوس بچه ماهیان تیلایای نیل بررسی شد. از اینرو، تعداد 200 قطعه بچه ماهی تیلاپیای نیل با میانگین وزنی 09/0 ± 15/9 گرم تهیه و با پودر قارچ صدفی در چهار سطح 0(شاهد)، 5/0، 1 و 2 گرم به ازای کیلوگرم جیره با میزان 3% وزن بدن به مدت 60 روز تغذیه شدند. در انتهای آزمایش برای بررسی عملکرد رشد زیستسنجی به طور تصادفی از تمام گروه‌ها انجام شد. همچنین، برخی از شاخص‌های ایمنی سرم و موکوس شامل ایمنوگلوبولین کل و فعالیت لیزوزیم بررسی شدند. الگوی پروتئینی موکوس به روش الکتروفورز ژل سدیم دو دوسیل سولفات پلی آکریل آمید ارزیابی شد. نتایج نشان داد که بهترین عملکرد رشد و بیشترین میزان لیزوزیم و ایمنوگلوبولین موکوس به طور معناداری در مقایسه با گروه شاهد مربوط به گروه تغذیه شده با جیره حاوی 2 گرم پودر قارچ صدفی می‌شد (05/0>P). میزان لیزوزیم و ایمنوگلوبولین کل سرم به ترتیب در تیمارهای تغذیه شده با 5/0 و 1 گرم پودر قارچ صدفی در مقایسه با گروه شاهد به طور معناداری بالاتر بود (05/0>P). باندهای پروتئینی محدوده‌ای از 11تا 100کیلودالتون داشتند. تراکم باندها در تیمارهای تغذیه شده با پودر قارچ صدفی در مقایسه با گروه شاهد بیشتر بود. به طورکلی نتایج نشان داد که جیره مکمل شده با 2 گرم پودر قارچ صدفی اثرات مثبتی بر شاخص‌های رشد، الگوی پروتئینی و برخی از شاخص‌های ایمنی موکوس و سرم بچه ماهی تیلاپیای نیل داشت



عنوان مقاله [English]

Effects of using oyster mushroom powder (Pleurotus ostreatus) in the diet of Nile tilapia (Oreochromis niloticus) fingerlings on growth performance, immunity of skin mucus and blood serum and mucus protein pattern

نویسندگان [English]

  • Hossein Arab 1
  • Hamed Paknejad 2
  • Seyed Hossein Hoseinifar 1
  • Mohammadreza Imanpoor 1
  • Aali Jafar 1
  • Mohsen Tajari 3
1 Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Dept. of Fisheries, Bandargaz Branch, Islamic Azad University, Bandargaz, Iran.
چکیده [English]

Mushrooms have a large amount of biologically active compounds such as prebiotics. In the present study, we tested the effect of supplementing oyster mushroom powder in the diet on growth performance, survival, serum and mucus immune parameters and mucus protein pattern of Nile tilapia fingerlings. Therefore, 200 pieces of Nile tilapia fingerlings with an average weight of 9.15 ± 0.09 g were prepare and then, they were fed with oyster mushroom powder at four levels including 0, 0.5, 1 and 2 g kg-1 diet by 3% of their body weight per day (three replications). At the end of the experiment, biometry was performed to measure the growth performance. Also, some serum and mucus immune parameters such as total immunoglobulin and lysozyme were investigated. The protein pattern of skin mucus was evaluated by sodium dodecyl-sulfate polyacrylamide gel electrophoresis method. The results showed that the best growth performance and the highest levels of lysozyme and mucus immunoglobulin were significantly in the group fed with a diet containing 2 g oyster mushroom powder compared to the control group (P<0.05). The amount of lysozyme and total serum immunoglobulin was significantly higher in the treatments fed with 0.5 and 1 g of oyster mushroom powder, respectively, compared to the control group (P<0.05). The protein bands ranged from 11 to 100 kilo Daltons. The density of bands in the treatment of oyster mushroom powder was higher compared to the control group. In general, the results showed that the diet containing 2 g of oyster mushroom powder had more positive effects on growth performance, protein pattern and some immune parameters of mucus and serum of Nile tilapia fingerlings.

کلیدواژه‌ها [English]

  • oyster mushroom
  • Nile tilapia
  • mucus protein pattern
  • growth
  • immune index
1.Tangestani, R., Doughikollaee, E., Ebrahimi, E., & Zare, P. (2011). Effects of garlic essential oil as an immunostimulant on hematological indices of juvenile beluga (Huso huso). Journal of Veterinary Research. 66 (209-216), 279.
2.Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology. 8, 1137-1144.
3.Pohlenz, C., & Gatlin III, D. M. (2014). Interrelationships between fish nutrition and health. Aquaculture, 431, 111-117.
4.Kuebutornye, F. K., Abarike, E. D., Lu, Y., Hlordzi, V., Sakyi, M. E., Afriyie, G., Wang, Z., Li, Y., & Xie, C. X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish physiology and biochemistry, 46 (3), 819-841.
5.Cámara-Ruiz, M., Balebona, M. C., Moriñigo, M. Á., & Esteban, M. Á. (2020). Probiotic Shewanella putrefaciens (SpPdp11) as a fish health modulator: a review. Microorganisms, 8 (12), 1990.
6.Mohammadian, T., Ghanei-Motlagh, R., Molayemraftar, T., Mesbah, M., Zarea, M., Mohtashamipour, H., & Nejad, A. J. (2021). Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. Fish & Shellfish Immunology, 112, 38-45.
7.Ghafarifarsani, H., Rashidian, G., Bagheri, T., Hoseinifar, S. H., & Van Doan, H. (2021). Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout fry infected with. Annals of Animal Science, 21 (2), 543-559.
8.Gewaily, M. S., Abdo, S. E., Moustafa, E. M., AbdEl-Kader, M. F., Abd El-Razek, I. M., El-Sharnouby, M., Alkafafy, M., Raza, S. H. A., El Basuini, M. F., Van Doan, H., & Dawood, M. A. (2021). Dietary synbiotics can help relieve the impacts of  deltamethrin toxicity of Nile tilapia reared at low temperatures. Animals, 11 (6), 1790.
9.Yilmaz, S., Yilmaz, E., Dawood, M. A., Ringø, E., Ahmadifar, E., & Abdel-Latif, H. M. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514.
10.Rey, M. S., García-Soto, B., Fuertes-Gamundi, J. R., Aubourg, S., & Barros-Velázquez, J. (2012). Effect of a natural organic acid-icing system on the microbiological quality of commercially relevant chilled fish species. LWT-Food Science and Technology, 46 (1), 217-223.
11.Xia, Y. T., Hu, W. H., Wu, Q. Y., Dong, T. T. X., Duan, R., Xiao, J., Li, S. P., Qin, Q. W., Wang, W. X., & Tsim, K. W. K. (2020). The herbal extract deriving from aerial parts of Scutellaria baicalensis shows anti-inflammation and anti-hypoxia responses in cultured fin cells from rabbit fish. Fish & shellfish immunology, 106, 71-78.
12.Dada, A. (2019). Effects of herbal growth promoter feed additive in fish meal on the performance of Nile tilapia (Oreochromis niloticus (L.)). Egypt. Acad. J. Biolog. Sci. 4 (1), 111-117.
13.Choubert, G., Mendes-Pinto, M. M., & Morais, R. (2006). Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture, 257 (1-4), 429-436.
14.Sepehrfar, D., Hoseinifar, S.H., & Jafarnodeh, A. (2018). The effects of singular or combined administration of Pediococcus acidlactii and Rafinose as prebiotic on mucosal immune parameters and intestinal histomorphology of Common Carp (Carassius auratus). Journal of Physiology and Animal Development. 12 (1), 25-34. [In Persian]
15.Qobadi, S., Rezaghi Mansour, M., Akrami, R., Amani Danji, K., & Ismaili Mola, A. (2018). The effect of different levels of prebiotic mannan oligosaccharide on growth indicators, survival, carcass composition and intestinal lactobacillus density in juvenile beluga. Marine Science and Technology, 10 (4), 67-77. [In Persian]
16.Pouramini, M., & Hosseinifar, S.H. (2016). Application of probiotics and prebiotics in aquaculture. Moj Sabz Publications. P. 29-31, 120p. [In Persian]
17.Iri, A., Hedayati, S. A., Pakenjad, H., Bagheri, T., & Khaleghi, R. (2018). The effect of different levels of prebiotic congeners of oyster mushroom on the mucus immunity parameters of Nile tilapia fish (Oreochromis niloticus) exposed to chlorpyrifos poison in laboratory conditions. Aquatic Nutrition, 5 (2), 61-70.
18.Chang, S. T. (1999). Global impact of edible and medicinal mushrooms on human welfare in the 21st century: non-green revolution. International Journal of Medicinal Mushrooms, 1, 1e7.
19.Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied microbiology and biotechnology, 60 (3), 258-274.
20.Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom (Pleurotus ostreatus). Innovative Food Science and Emerging Technologies, 10, 228e234.
21.Kamilya, D., Ghosh, D., Bandyopadhyay, S., Mal, B. C., & Maiti, T. K. (2006). In vitro effects of bovine lactoferrin, mushroom glucan and Abrus agglutinin on Indian major carp, catla (Catla catla) head kidney leukocytes. Aquaculture, 253, 130-139.
22.Din, A. R. J. M., Razak, S. A., & Sabaratnam, V. (2012). Effect of mushroom supplementation as a prebiotic compound in super worm based diet on growth performance of red tilapia fingerlings. Sains Malaysiana. 41, 1197-1203.
23.Zakariaee, H., Sodagar, M., Hosseini, S., Paknejad, H., & Baroah, K. (2019). The effect of using a synbiotic produced from button mushroom extract in combination with two species of lactic acid bacteria on the activity of digestive enzymes, carcass composition, growth and intestinal microbial flora in zebra fish (Danio rerio). Marine science and technology. In press, 10.22113/ jmst.2020.233183.237. [In Persian]
24.Sodagar, M., Khalsa, M., Mazandarani, M., Hosseini, A., & Zakariaee, H. (2016). The effect of Spirulina sp on the growth, survival and pigmentation of Pseudotropheus demasoni. Journal of Fisheries, Journal of Natural Resources of Iran, 69 (1), 21-27. [In Persian]
25.Nyekanyeka, T. (2011). Analysis of profitability and efficiency of improved and local smallholder dairy production: A case of Lilongwe milk shed area. M.Sc. Thesis. University of Malawi, Bunda College.
26.Liping, L., Zongfeng, Z., Wenbo, Z., Murray, F., & Little, D. (2012). Tilapia aquaculture in China: Low market prices, other issues challenge as sector seeks sustainability. Global Seafood Alliance. 2, 1-7.
27.Khanjani, M.H., & Alizadeh, M. (2021). Biological and economic performance of Nile tilapia (Oreochromis niloticus)
in two conventional and limited water exchange systems. J. Aqu. Eco. 11 (3), 12-21. [In Persian]
28.Zakariaee, H., Sudagar, M., Hosseini, S. S., Paknejad, H., & Baruah, K. (2021). In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Frontiers in Microbiology, 12, 758758.
29.Amiri, O., Miandare, H. K., Hoseinifar, S. H., Shabni, A., & Safari, R. (2018). Skin mucus protein profile, immune parameters, immune-related gene expression, and growth performance of rainbow trout (Oncorhynchus mykiss) fed white button mushroom (Agaricus bisporus) powder. International journal of medicinal mushrooms, 20 (4).
30.Jafarnoude, A. (2015). Investigating the synergistic properties of some organic acids with Lactobacillus casei bacteria in rearing rainbow trout fingerlings (Oncorhynchus mykiss). Doctoral dissertation, Urmia University, 100p. [In Persian]
31.AOAC (Association of official Analytical chemists), (1990). Official Methods of Analysis AOAC. Washington, DC. 1263p.
32.Ross, N. W., Firth, K. J., Wang, A., Burka, J. F., & Johnson, S. C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Diseases of aquatic organisms. 41, 43.
33.Subramanian, S., MacKinnon, S. L., & Ross, N. W. (2007a). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 148, 256-263.
34.Mehri, A., Jafar, A., & Abarghuei, S. (2022). Study on liver lesions and mucosal indices of common carp (Cyprinus carpio) in exposure to different concentrations of nanoplastic. Utilization and Cultivation of Aquatics, 10 (4), 15-26. [In Persian]
35.Cho, J. H., Park, I. Y., Kim, M. S., & Kim, S. C. (2002). Matrix metalloproteinase 2 is involved in the regulation of the antimicrobial peptide parasin I production in catfish skin mucosa. FEBS letters, 531 (3), 459-463.
36.Subramanian, S., Mackinnon, S. L., & Ross, N. W. (2007b). A comparative study on innate immune parameters in the epidermal mucus of various fish species. 148, 256-263.
37.Siwicki, A., & Anderson, D. (1993). Nonspecific defence mechanisms assay in fish II; Potential killing activity of neutrophils and manocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum.
38.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248-254.
39.Laemmli, U.K. (1970). SDS-page Laemmli method. Nature, 227, 680-685.
40.Hoseinifar, S. H., Zou, H. K., Paknejad, H., Hajimoradloo, A., & Van Doan, H. (2019). Effects of dietary white-button mushroom powder on mucosal immunity, antioxidant defence, and growth of common carp (Cyprinus carpio). Aquaculture, 501, 448-454.
41.Ringø, E., Dimitroglou, A., & Hossein, S. (2014). 14 Prebiotics in Finfish: An Update. Aquaculture nutrition: gut health, probiotics and prebiotics. 360.
42.Mohan, K., Karthick Rajan, D., Muralisankar, T., Ramu Ganesan, A., Marimuthu, K., & Sathishkumar, P. (2022). The potential role of medicinal mushrooms as prebiotics in aquaculture: A review. Reviews in Aquaculture.
43.Van Doan, H., Hoseinifar, S. H., Esteban, M. Á., Dadar, M., & Thu, T. T. N. (2019). Mushrooms, seaweed, and their derivatives as functional feed additives for aquaculture: an updated view. Studies in natural products chemistry, 62, 41-90.
44.Chang, C. S., Huang, S. L., Chen, S., & Chen, S. N. (2013). Innate immune responses and efficacy of using mushroom beta-glucan mixture (MBG) on orange-spotted grouper, Epinephelus coioides, quaculture. Fish & shellfish immunology. 35, 115-125.
45.Chong, V., Al-Azad, S., & Shapawi, R. (2016). Comparison of two edible mushroom extract as aquaculture feed additive to enhance immune response of Asian Seabass. Trans. Sci. Technol. 3, 427-432.
46.Mizuno, T., Saito, H., Nishitoba, T., & KaWagishi, H. (1995). Antitumor‐active substances from mushrooms. Food Reviews International. 11, 23-61.
47.Assan, D., Kuebutornye, F.K.A., Hlordzi, V., Chen, H., Mraz, J., Mustapha, U.F., & Abarike, E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653.
48.Mirghaed, A. T., Yarahmadi, P., Hosseinifar, S. H., Tahmasebi, D., Gheisvandi, N., & Ghaedi, A. (2018). The effects singular or combined administration of fermentable fiber and probiotic on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisii kutum) fingerlings. Fish & shellfish  immunology, 77, 194-199.
49.Allameh, S. K., Noaman, V., & Nahavandi, R. (2017). Effects of probiotic bacteria on fish performance. Advanced Techniques in Clinical Microbiology, 1(2), 11.
50.Rodrigues, M. V., Zanuzzo, F. S., Koch, J. F. A., de Oliveira, C. A. F., Sima, P., & Vetvicka, V. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules, 25 (22), 5378.
51.Do Huu, H., Sang, H. M., & Thuy, N. T. T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish & shellfish immunology, 54, 402-410.
52.Dawood, M. A., Metwally, A. E. S., El-Sharawy, M. E., Atta, A. M., Elbialy, Z. I., Abdel-Latif, H. M., & Paray, B. A. (2020). The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture, 523, 735205.
53.Aramli, M.S., Kamangar, B., & Nazari, R.M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish & shellfish immunology, 47 (1), 606-610.
54.Ringø, E., Bendiksen, H. R., Gausen, S. J., Sundsfjord, A., & Olsen, R. E. (1998). The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). Journal of Applied Microbiology, 85(5), 855-864.
55.Vázquez, G.A., & Leitherer, C. (2005). Optimization of Starburst99 for intermediate-age and old stellar populations. The Astrophysical Journal, 621 (2), 695.
56.Harikrishnan, R., Balasundaram, C., & Heo, M.S. (2011). Fish & Shell fish Immunology Diet enriched with mushroom Phellinus linteus extract enhances the growth, innate immune response, and disease resistance of kelp grouper, Epinephelus bruneus against vibriosis. Fish and Shellfish Immunology. 30, 128-134.
57.Kühlwein, H., Merrifield, D., Rawling, M., Foey, A., & Davies, S. (2014). Effects of dietary β‐(1, 3)(1, 6)‐D‐glucan supplementation on growth performance, intestinal morphology and haemato‐immunological profile of mirror carp (Cyprinus carpio L.). Journal of animal physiology and animal nutrition. 98, 279-289.
58.Van Loo, J., & Gibson, G. (2006). Inulin-type fructans as prebiotics. Prebiotics: Development & Application. 57-100.
59.Muin, H., Taufek, N. M., Abiodun, R. A., Yusuf, H. M., & Razak, S. A. (2015). Effect of partial and complete replacement of fishmeal with mushroom stalk meal and soy bean meal on growth performance of Nile tilapia, Oreochromis niloticus fingerlings. Sains Malaysiana, 44 (4), 511-516.
60.Saurabh, S., & Sahoo, P. K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture research, 39 (3), 223-239.
61.Song, Q., Xiao, Y., Xiao, Z., Liu, T., Li, J., Li, P., & Han, F. (2021). Lysozymes in Fish. Journal of Agricultural and Food Chemistry, 69 (50), 15039-15051.
62.Hikima, J. I., Hirono, I., & Aoki, T. (2003). The lysozyme gene in fish. In Aquatic genomics (pp. 301-309). Springer, Tokyo.
63.Bower, C. K., Avena‐Bustillos, R. J., Olsen, C. W., McHugh, T. H., & Bechtel, P. J. (2006). Characterization of fish‐skin gelatin gels and films containing the antimicrobial enzyme lysozyme. Journal of food science, 71 (5), M141-M145.
64.Harikrishnan, R., Balasundaram, C., & Heo, M.S. (2012a). Effect of Inonotus obliquus enriched diet on hematology, immune response and disease protection in kelp grouper, Epinephelus bruneus against Vibrio harveyi. Aquaculture. 344-349, 48-53.
65.Harikrishnan, R., Balasundaram, C., & Heo, M.S. (2012b). Inonotus obliquus containing diet enhances the innate immune mechanism and disease resistance in olive flounder Paralichythys olivaceus against Uronema marinum. Fish & shellfish immunology, 32(6), 1148-1154.
66.Sirimanapong, W., Adams, A., Ooi, E. L., Green, D. M., Nguyen, D. K., Browdy, C. L., Collet, B., & Thompson, K. D. (2015). The effects of feeding immunostimulant β-glucan on the immune response of Pangasianodon hypophthalmus. Fish & shellfish immunology. 45, 357-366.
67.Katya, K., Yun, Y. H., Yun, H., Lee, J. Y., & Bai, S. C. (2014a). Effects of dietary fermented by-product of mushroom, Pleurotus ostreatus, as an additive on growth, serological characteristics and nonspecific immune responses in juvenile Amur catfish, Silurus asotus: 1-9.
68.Baba, E., Uluköy, G., & Öntaş, C. (2015). Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae. Aquaculture, 448, 476-482.
69.Manayi, A., Vazirian, M., Zade, F. H., & Tehranifard, A. (2016). Immunomodulation effect of aqueous extract of the artist's conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), on the rainbow trout (Oncorhynchus mykiss). International Journal of Medicinal Mushrooms, 18 (10).
70.Adams, S., Che, D., Hailong, J., Zhao, B., Rui, H., Danquah, K., & Qin, G., (2019). Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets. Journal of the Science of Food and Agriculture, 99 (7), 3616-3627.
71.Uluköy, G., & Öntaş, C. (2015). Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss and disease resistance against Lactococcus garvieae. Aquaculture, 448.
72.Hoseinifar, S. H., Shakouri, M., Van Doan, H., Shafiei, S., Yousefi, M., Raeisi, M., Yousefi, S., Harikrishnan, R., & Reverter, M. (2020). Dietary supplementation of lemon verbena (Aloysia citrodora) improved immunity, immune-related genes expression and antioxidant enzymes in rainbow trout (Oncorrhyncus mykiss). Fish & Shellfish Immunology, 99, 379-385.
73.Safari, O., & Sarkheil, M. (2018). Dietary administration of eryngii mushroom (Pleurotus eryngii) powder on haemato-immunological responses, bactericidal activity of skin mucus and growth performance of koi carp fingerlings (Cyprinus carpio koi). Fish & shellfish immunology, 80, 505-513.
74.El Enshasy, H.A., & Hatti-Kaul, R. (2013). Mushroom immunomodulators: unique molecules with unlimited applications. Trends in biotechnology, 31 (12), 668-677.
75.Abu-Almaaty, A. H., Bahgat, I. M., & Al-Tahr, Z. M. (2020a). Using SDS-PAGE and ISSR as biochemical markers for assessment the genetic similarity and protein analysis of some Cyprinid fish species. Genetika, 52 (1), 161-175.
76.Abu Almaaty, A., E Abd-Alaty, H., & A Abbas, O. (2020b). Molecular Discrimination among Three Fish Species of Family Sparidae Using ISSR and SDS-PAGE Techniques. Egyptian Journal of Aquatic Biology and Fisheries, 24 (7-Special issue), 619-628.
77.Al-Ghanim, K. A., Mahboob, S., Vijayaraghavan, P., Al-Misned, F. A., Kim, Y. O., & Kim, H. J. (2020). Sub-lethal effect of synthetic pyrethroid pesticide on metabolic enzymes and protein profile of non-target Zebra fish, Danio rerio. Saudi Journal of Biological Sciences, 27 (1), 441-447.
78.Fagan, M. S., O'Byrne-Ring, N., Ryan, R., Cotter, D., Whelan, K., & Mac Evilly, U. (2003). A biochemical study of mucus lysozyme, proteins and plasma thyroxine of Atlantic salmon (Salmo salar) during smoltification. Aquaculture, 222 (1-4), 287-300.
79.Shepherd, R., Robertson, A., & Ofman, D. (2000). Dairy glycoconjugate emulsifiers: casein–maltodextrins. Food Hydrocolloids, 14 (4), 281-286.
80.Guardiola, F. A., Dioguardi, M., Parisi, M. G., Trapani, M. R., Meseguer, J., Cuesta, A., Cammarata, M., & Esteban, M. A. (2015). Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish & shellfish immunology, 45 (1), 112-123.
81.Abraham, S. N., Sharon, N., & Ofek, I. (1999). Adhesion of bacteria to mucosal surfaces. Mucosal immunology, 3, 35-48.