بررسی میزان تقلب در تولید کنسرو ماهی تن با استفاده از روش DNA بارکدینگ در ایران

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم صنایع غذایی و فناوری، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 نویسنده مسئول، گروه عمل‌آوری فرآورده‌های شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه شیمی، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

4 دانشیار گروه تکثیر و پرورش آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

امروزه اختلاط گونه‌های با کیفیت پایین در فرآورده‌های کنسروی به ویژه در محصولات شیلاتی به عنوان یکی از مهم‌ترین معضلات نظارت بر برخی واحدهای تولیدی صنایع غذایی دریایی به شمار می‌رود. از میان روش‌های نوین تشخیص از تقلبات، روش‌های ژنتیکی مانند DNA بارکدینگ از صحت و دقت بالایی برخوردار است. از این رو، هدف از تحقیق حاضر، بررسی تقلب در کنسرو تن ماهیان ایران تولید شده با استفاده ازDNA بارکدینگ، بوسیله شناساگر سیتوکروم اکسیداز1 می‌باشد. در تحقیق حاضر کنسروهای ماهی تن پرشده با گوشت یک تکه و کنسروماهی تن پرشده با گوشت خردشده از برندهای مختلف موجود در بازار از مناطق مختلف کشور جمع آوری گردید. نمونه‌ها پس از استخراج DNA و بهینه سازی فرآیندهای آن، برای ژن سیتوکروم اکسیداز 1 با استفاده از پرایمرهای بهینه PCR شده و سپس مورد توالی یابی قرار گرفتند. نتایج حاصل از توالی‌یابی نشان داد از100 نمونه کنسرو مورد بررسی، 80 نمونه دارای 97 درصد شباهت ژنتیکی به ماهیان تن درج شده روی برچسب قوطی کنسرو، 17 نمونه دارای 90 درصد شباهت ژنتیکی به شورت ماهیان (Sillaginidae)، و 3 نمونه مربوط به 3 گونه ماهی دیگر بود. از این میان تنها 3 نمونه مربوط به کنسروهای تن ماهی تهیه شده از گوشت یک تکه بود. نتایج نشان داد که این روش به دلیل دقت بالا و اختصاصی بودن، برای کنسروهای ماهی که ممکن است قطعات DNA طی فرآیندهای تهیه کنسرو از بین برود، بسیار کاربردی است و استفاده از آن برای بررسی میزان تقلبات غذاهای فرآوری شده پیشنهاد می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the amount of fraud in the production of canned tuna using the DNA barcoding method in Iran

نویسندگان [English]

  • Mona Eyvaz 1
  • Mehdi Zolfaghari 2
  • Mojtaba Nasr Isfehani 3
  • Hamed Paknejad 4
1 Ph.D. Student, Dept. of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Corresponding Author, Dept. of Fishery Products Processing, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Prof., Dept. of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Nowadays, the mixing of low-quality species in canned products, especially in fishery products, is considered as one of the most important problems of monitoring some food industry production units. Among the new methods of detecting counterfeits, genetic methods such as DNA barcoding have high accuracy and precision. Therefore, the purpose of this research is to investigate the fraud in canned Iranian tuna fish produced using DNA barcoding, by cytochrome oxidase 1 detector. In this research, canned tuna stuffed with one piece of meat and canned tuna stuffed with chopped meat from different brands available in the market were collected from different regions of the country. The samples after DNA extraction and optimizing its process, were subjected to PCR by cytochrome oxidas 1 gene and then sequenced.
The results of the sequencing showed that out of 100 canned samples examined, 80 samples have 97% genetic similarity to the fish listed on the can label, 18 samples have 90% genetic similarity to short fish. (Sillaginidae), and 3 samples belonged to 3 different fish species. Among these, only 3 samples were related to canned tuna prepared from one piece of meat. The results showed that this method is very useful due to its high speed and accuracy, for canned fish, where DNA parts may be lost during the canning process and it can be used to check the amounts of fraud in processed foods are recommended.

کلیدواژه‌ها [English]

  • Fraud detection
  • canned tuna
  • DNA barcoding
  • cytochrome oxidase 1 marker
[1]1.Smith, M., & Hiemstra, C. (eds.). (1986). Smith’s Sea Fishes. Grahamstown, South Africa: JLB Smith Institute of  lchthyology.
2.Lane, I. W., & Comac, I. (1996). Sharks Still Don’t Get Cancer. New York: Avery.
3.FAO. (2018). The State of World Fisheries and Aquaculture-Meeting the sustainable development goals. Rome. FAOSTAT Internet information at www.fao.org.
4.Hosseini, M., Dabagh Moghadam, A., & Adeli, A. (2019). Evaluation of barriers to consumption and purchase of fish among different consumer groups (Case: AJA personnel). Utilization and Cultivation of aquatics. 9 (3), 55-71. [In Persian]
5.Ganjavi, M., Ezzatpanah, H., Givianrad, M. H., & Shams, A. (2010). Effect of canned tuna fish processing steps on lead and cadmium contents of Iranian tuna fish. Food chemistry, 118 (3), 525-528.
6.Ghouri, M., Ismail, M., Javed, M., Khan, S.H., Munawar, N., Umar, A. B., Nisa, M., Aftab, S. O., Amin, S., Khan, Z., & Ahmad, A. (2020). Identification of Edible Fish Species of Pakistan through DNA Barcoding. Frontiers Marine Science. November, 7, 554183.
7.Armani, A., Guardone, L., Castigliego, L., D’ Amico, P., Messina, A., Malandra, R., Gianfaldoni, D., & Guidi, A.) 2015). DNA and Mini-DNA barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market. Food Control, 50, 589-596.
8.Iranian Fisheries Statistical Yearbook, (2018). 33p.
9.Pecoraro, C., Crobe, V., Ferrari, A., Piattoni, F., Sandionigi, A., Andrews, A.J., Cariani, A., & Tinti, F. (2020). Canning processes reduce the DNA-based traceability of commercial tropical tunas. Foods, 9 (10), 1372.
10.Razavai Shirazi, H. (2018). Technology of marine products: principles of preservation and processing. Naghsh Mehr, 390p.
11.Cawthorn, D. M., Steinman, H. A., & Witthuhn, R. C. (2012). DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Research International, 46 (10), 30-40.
12.Peivasteh-Roudsari, L., Rahmani, A., Shariatifar, N., Tajdar-Oranj, B., Mazaheri, M., Sadighara, P., & Khaneghah, A. M. (2020). Occurrence of histamine in canned fish samples (Tuna, Sardine, Kilka and Mackerel) from markets in Tehran. Journal of food protection, 83 (1), 136-141.
13.Zhang, J. B., & Hanner, R. (2011). DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics and Ecology, 39 (1), 31-42.
14.Dawnay, N., Ogden, R., McEwing, R., Carvalho, G. R., & Thorpe, R. S. (2007). Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic science international, 173 (1), 1-6.
15.Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., ... & Labra, M. (2013). DNA barcoding as a new tool for food traceability. Food research international, 50 (1), 55-63.
16.Beamish, R. J., & Rothschild, B. J. (eds.). (2009). The Future of Fisheries Science in North America. Berlin: Springer Science & Business Media.
17.Fernandes, T. J., Costa, J., Oliveira, M. B., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chem. 230, 49-57. doi: 10.1016/ j.foodchem. 2017.03.015.
18.Nicolè, S., Barcaccia, G., Erickson, D. L., Kress, J. W., & Lucchin, M. (2013). The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.). BMC research notes, 6 (1), 1-13.
19.Maleki, A., Ghorbani, M., Hamid, M., Sadeghi Mahonek, A. R., & Khameri, M. (2017). Detecting the presence of pig derivatives in meat samples and suspicious highly processed foods using real-time polymerase chain reaction method. Food Science and Technology, 75 (15), 13-22. [In Persian]
20.Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462), 1847-1857.
21.Inoue, J. G., Miya, M., Tsukamoto, K., & Nishida, M. (2001). Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. Journal of Molecular Evolution, 52 (4), 311-320.
22.Aryainejad, Sh., Kavousi, K., Fatuhi, L., & Mousavi Movahedi, A. A. (2017). Detection of adulteration in meat products based on DNA sequence. Science Cultivation, 8 (2), 143-147. [In Persian]
23.Miandare, H. K., Farahmand, H., Akbarzadeh, A., Ramezanpour, S., Kaiya, H., Miyazato, M., ... & Nikinmaa, M. (2013). Developmental transcription of genes putatively associated with growth in two sturgeon species of different growth rate. General and Comparative Endocrinology, 182, 41-47.
24.Kitpipit, T., Sittichan, K., & Thanakiatkrai, P. (2014). Direct-multiplex PCR assay for meat species identification in food products. Food Chemistry, 163, 77-82.
25.Parkhemi-Nejad, F., Hosseini, S.A., Tawafi, F., Tajabadi Ebrahimi, M., & Sharifan, A. (2013). Identification of adulterations in coldcuts and sausages made from beef based on the identification of mitochondrial genes of animal species in Tehran province. Food Hygiene, 4 (1), 81-97. [In Persian]
26.Fiorino, G. M., Garino, C., Arlorio, M., Logrieco, A. F., Losito, I., & Monaci, L. (2018). Overview on untargeted methods to combat food frauds: a focus on fishery products. Journal of food quality, 2018. Article ID 1581746, 13p.
27.López-López, P., García-Ripollés, C., & Urios, V. (2014). Food predictability determines space use of endangered vultures: implications for management of supplementary feeding. Ecological Applications, 24 (5), 938-949.
28.Spink, J., & Moyer, D. C. (2011). Defining the public health threat of food fraud. Journal of food science, 76 (9), 157-163.
29.Wulff, T., Nielsen, M. E., Deelder, A. M., Jessen, F., & Palmblad, M. (2013). Authentication of fish products by large-scale comparison of tandem mass spectra. Journal of proteome research, 12 (11), 5253-5259.
30.Gao, Z., Liu, Y., Wang, X., Wei, X., & Han, J. (2019). DNA mini-barcoding: a derived barcoding method for herbal molecular identification. Frontiers in plant science, 10, 987.
31.FAO (Rome) FishStats database, (2004).
32.Barcaccia, G., Lucchin, M., & Cassandro, M. (2015). DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity, 8 (1), 2.
33.Moosavi-Movahedi, A. A., Ariaeenejad, S., Kavousi, K., & Fotuhi, L. (2018). DNA primer method for detecting fraud in meat products. Science Cultivation, 8 (2), 143-147.
34.Pardo, M. Á., & Jiménez, E. (2020). DNA barcoding revealing seafood mislabeling in food services from Spain. Journal of Food Composition and Analysis, 91, 103521.
35.Baez Rodriguez, N. M. (2022). Using DNA barcoding to identify seafood fraud in Puerto Rico. [Doctoral dissertation]
36.Fernandes, T. J., Amaral, J. S., & Mafra, I. (2021). DNA barcode markers applied to seafood authentication: An updated review. Critical Reviews in Food Science and Nutrition, 61 (22), 3904-3935.
37.Riley, J. S., & Tait, S. W. (2020). Mitochondrial DNA in inflammation and immunity. EMBO reports, 21, 4. p.e49799.
38.Pazhenkova, E. A., & Lukhtanov, V. A. (2019). Nuclear genes (but not mitochondrial DNA barcodes) reveal real species: Evidence from the Brenthis fritillary butterflies (Lepidoptera, Nymphalidae). Journal of Zoological Systematics and Evolutionary Research, 57 (2), 298-313.
39.Mirkhani, Sh., Chengizi, R., & Shujaei, L. (2012). Investigation and verification of some samples of canned Hoover
tuna (unnus tonggol) available in the Iranian market using the method. DNA Barcoding. The second national conference on food security, Sawad Kouh. https://civilica.com/doc/303484.
40.Casper, R. M., Jarman, S. N., Deagle, B. E., Gales, N. J., & Hindell, M. A. (2007). Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known diet. Journal of Experimental Marine Biology and Ecology, 347 (1-2). 144-154.
41.Bravi, C. M., Lirón, J. P., Mirol, P. M., Ripoli, M. V., Peral-García, P., & Giovambattista, G. (2004). A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Medicine, 6 (4), 246-251.
42.Wan, Q. H., & Fang, S. G. (2003). Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic science international, 131 (1), 75-78.
43.Kalengi, M. H., Farahmand, H., Aghilinejad, S. M., & Akbarzadeh, A. (2012). Introduction of cytochrome b gene as a suitable gene to identify the identity of caviar and sturgeon fish of the Caspian Sea. Journal of Utilization and Cultivation of Aquatics, 1 (2), 51-62.
44.Ghouri, M. Z., Ismail, M., Javed, M. A., Khan, S. H., Munawar, N., Umar, A. B., Aftab, S. O., Amin, S., Khan, Z., & Ahmad, A. (2020). Identification of edible fish species of Pakistan through DNA barcoding. Frontiers in Marine Science, 7, 554183.