ارزیابی ویژگی‌های بیوشیمیایی آنزیم‌ تریپسین تخلیص شده از روده ماهی کیلکای معمولی (Clupeonella cultriventris caspia)

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، دانشیار گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، همدان، ایران

2 استاد گروه علوم و مهندسی شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران

3 استاد گروه بیوتکنولوژی، مؤسسه تحقیقات واکسن و سرم‌سازی رازی، کرج، البرز، ایران

چکیده

در این تحقیق، ویژگی‌های بیوشیمیایی آنزیم تریپسین تخلیص شده از روده ماهی کیلکای معمولی(Clupeonella cultriventris caspia) شامل دما و pH بهینه، دما و pH پایداری، اثر بازدارنده‌های آنزیمی، یون‌های فلزی، سورفاکتانت‌ها و عوامل اکسیدکننده مورد بررسی قرارگرفت. نتایج نشان داد دما و pH بهینه آنزیم تریپسین به ترتیب °C60 و 8 و پایداری دمایی و pH آن به ترتیب تا °C50 و 10-7 تعیین گردید. بازدارنده‌های SBTI و TLCK، به عنوان دو بازدارنده اختصاصی آنزیم تریپسین، اثر مهارکنندگی کاملی بر فعالیت آنزیم تریپسین داشتند (05/0>P). یون‌هایCa2+ وMg2+ سبب افزایش معنی‌دار و یون‌هایCu2+،Ba2+،Co2+،Zn2+،Fe2+ وAl3+ باعث کاهش معنی‌دار فعالیت آنزیم تریپسین گردیدند (05/0>P). یون‌هایK+ و Na+اثر معنی‌داری بر فعالیت آنزیم تریپسین نشان ندادند (05/0P>). فعالیت آنزیم تریپسین در حضور سورفاکتانت‌های ساپونین و سدیم کولات افزایش معنی‌دار (05/0>P) و در حضور سدیم دودسیل سولفات و عوامل اکسیدکننده (سدیم پربورات و پراکسید هیدروژن) کاهش معنی‌داری (05/0>P) را نشان داد. ویژگی‌های بیوشیمیایی آنزیم تریپسین نشان داد که این آنزیم می‌تواند در آینده برای استفاده در صنایع مخلتف مدنظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of biochemical properties of the purified trypsin from common kilka (Clupeonella cultriventris caspia) intestine

نویسندگان [English]

  • Abbas Zamani 1
  • Masoud Rezaei 2
  • Rasool Madani 3
1 Corresponding Author, Associate Prof., Dept. of Fisheries Sciences and Engineering, Faculty of Natural Resources and Environmental, Malayer University, Hamedan, Iran
2 Professor, Dept. of Fisheries Sciences and Engineering, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
3 Professor, Dept. of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Alborz, Iran.
چکیده [English]

In this work, the biochemical properties of the purified trypsin from common kilka (Clupeonella cultriventris caspia) intestine including optimum temperature and pH, thermal and pH stability, effect of inhibitors, metal ions, oxidizing agents and surfactants were assayed. According to the obtained results, optimum temperature and pH of the trypsin were recorded at 60°C and 8 respectively. The stability of the trypsin was well preserved at temperatures of up to 50°C and pH from 7.0 to10.0. SBTI and TLCK, two specific trypsin inhibitors, had a completely inhibition effect on the enzymatic activity (P<0.05). The enzyme activity was significantly increased in the presence of Ca+2 and Mg+2 and decreased by Cu+2, Ba+2, Co+2 , Zn+2 , Fe+2 and Al+3 (P<0.05). Na+and K+ did not show any significant effect on the activity of trypsin (P>0.05). The enzymatic activity was significantly increased in presence of surfactants including saponin and sodium cholate and showed a significant decrease in presence of SDS and oxidizing agents like sodium perborate and hydrogen peroxide (P<0.05). Therefore, the results of our study can contribute to the clear understanding of the purified trypsin from common kilka intestine for application in different industries in future.

کلیدواژه‌ها [English]

  • Trypsin
  • intestine
  • common kilka
  • biochemical properties
1.Zamani, A., and Benjakul, S. 2016. Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. Journal of the Science of Food and Agriculture.96: 3. 962-969.
2.Klomklao, S., and Benjakul, S. 2018. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: purification
and physicochemical and biochemical characterization. International journal of biological macromolecules. 107: 1864-1870.
3.De Freitas-Júnior, A.C.V., da Costa, H.M.S., Marcuschi, M., Icimoto, M.Y., Machado, M.F., Machado, M.F., Ferreira, J.C., de Oliveira, V.M., Buarque, D.S., and Bezerra, R.S. 2021. Substrate specificity, physicochemical and kinetic properties of a trypsin from the giant Amazonian fish pirarucu (Arapaima gigas). Biocatalysis and Agricultural Biotechnology. 35: 102073.
4.Illanes, A. 2008. Enzyme production. In: Illanes, A. (Ed), Enzyme biocatalysis: Principles and Aplications, Springer.
pp. 57-89.
5.Shahidi, F., and Kamil, Y.J. 2001. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science & Technology. 12: 12. 435-464.
6.Marcuschi, M., Espósito, T.S., Machado, M.F., Hirata, I.Y., Machado, M.F., Silva, M.V., Carvalho Jr, L.B., Oliveira, V.,
and Bezerra, R.S. 2010. Purification, characterization and substrate specificity of a trypsin from the Amazonian fish tambaqui (Colossoma macropomum). Biochemical and Biophysical Research Communications. 396: 3. 667-673.
7.Dos Santos, D.M.R.C., dos Santos, C.W.V., de Souza, C.B., de Albuquerque, F.S., dos Santos Oliveira, J.M., and Pereira, H.J.V. 2020. Trypsin purified from Coryphaena hippurus (common dolphinfish): Purification, characterization and application in commercial detergents. Biocatalysis and Agricultural Biotechnology. 25: 101584.
8.Garciacarreno, F.L., Dimes, L.E., and Haard, N.F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical biochemistry. 214: 1. 65-69.
9.Lu, B.J., Zhou, L.G., Cai, Q.F., Hara, K., Maeda, A., Su, W.J., and Cao, M.J. 2008. Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food chemistry. 110: 2. 352-360.
10.Jellouli, K., Bougatef, A., Daassi, D., Balti, R., Barkia, A., and Nasri, M. 2009. New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: purification and characterisation. Food Chemistry. 116: 3. 644-650.
11.Klomklao, S., Kishimura, H., Benjakul, S., Simpson, B.K., and Visessanguan, W. 2010. Cationic trypsin: A predominant proteinase in Pacific saury (Cololabis saira) pyloric ceca. Journal of Food Biochemistry. 34: 5. 1105-1123.
12.Khantaphant, S., and Benjakul, S. 2010. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chemistry. 120: 658-664.
13.Zamani, A., Rezaei, M., Madani, R., and Habibi Rezaie M. 2014. Trypsin enzyme from viscera of common kilka (Clupeonella cultriventris caspia): purification, characterization, and its compatibility with oxidants and surfactants. Journal of Aquatic Food Product Technology. 23: 3. 237-252.
14.Dos Santos, C.W.V., da Costa Marques, M.E., de Araújo Tenório, H., de Miranda, E.C., and Pereira, H.J.V. 2016. Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochemistry and biophysics reports. 8: 29-33.
15.Unajak, S., Meesawat, P., Paemanee, A., Areechon, N., Engkagul, A., Kovitvadhi, U., Kovitvadhi, S., Rungruangsak-Torrissen, K., and Choowongkomon, K. 2012. Characterisation of thermostable trypsin and determination of trypsin isozymes from intestine of Nile tilapia (Oreochromis niloticus L.). Food Chemistry. 134: 1533-1541.
16.Khangembam, B.K., and Chakrabarti, R. 2015. Trypsin from the digestive system of carp Cirrhinus mrigala: Purification, characterization and its potential application. Food Chemistry. 175: 386-394.
17.Zamani, A., Madani, R., Rezaei, M., and Benjakul, S., 2017. Antioxidative activitiy of protein hydrolysate from the muscle of common kilka (Clupeonella cultriventris caspia) prepared using the purified trypsin from common kilka intestine. Journal of Aquatic Food Product Technology. 26: 1. 2-16.
18.Poonsin, T., Simpson, B.K., Benjakul, S., Visessanguan, W., Yoshida, A., Osatomi, K., and Klomklao, S. 2019. Anionic trypsin from the spleen of albacore tuna (Thunnus alalunga): Purification, biochemical properties and its application for proteolytic degradation of fish muscle. International journal of biological macromolecules. 133: 971-979.
19.Ktari, N., Khaled, H.B., Nasri, R., Jellouli, K., Ghorbel, S., and Nasri, M. 2012. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food chemistry. 130: 3. 467-474.
20.Klomklao, S., Kishimura, H., and Benjakul, S. 2014. Anionic trypsin from the pyloric ceca of Pacific Saury (Cololabis saira): purification and biochemical characteristics. Journal of Aquatic Food Product Technology.
23: 2. 186-200.
21.Zamani, A., Rezaei, M., and Madani, R. 2012. In-vitro effects of biochemical factors on trypsin activity from intestine and pyloric caeca of common kilka (Clupeonella cultriventris caspia) for inhibition of belly bursting. Iranian Scientific Fisheries Journal. 20: 4. 53-62. (In Persian)
22.El‐Beltagy, A.E., El‐Adawy, T.A., Rahma, E.H., and El‐Bedawey, A.A. 2005. Purification and characterization of an alkaline protease from the viscera of bolti fish (Tilapia nilotica). Journal of food biochemistry. 29: 5. 445-458.
23.Erlanger, B.F., Kokowsky, N., and Cohen, W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archives of biochemistry and biophysics. 95: 2. 271-278.
24.Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 193: 265-275.
25.Kishimura, H., Hayashi, K., Myashita, Y., and Nonmi, Y. 2005. Characterization of two trypsin isozymes from the viscera of Japanase Anchovy (Engraulis japonica). Journal of Food Biochemistry. 29: 459-469.
26.Kishimura, H., Klomklao, S., Benjakul, S., and Chun, B.S. 2008. Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chemistry, 106: 194-199.
27.Sreedharan, S.K., Verma, C., Caves, L.S., Brocklehurst, S.M., Gharbia, S.E., Shah, H.N., and Brocklehurst, K. 1996. Demonstration that 1-trans-epoxysuccinyl- l-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low M r inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64-β-trypsin complex. Biochemical Journal. 316: 3. 777-786.
28.Rungruangsak, T.K. 2007. Digestive efficiency, growth and qualities of muscle and oocyte in Atlantic (Salmo salar L.) fed on diets with krill meal as an alternative protein source. Journal of Food Biochemistry. 31: 509-540.
29.Simpson, B.K. 2000. Digestive proteinases from marine animals. In Seafood enzymes: Utilization and influence on postharvest seafood quality. Haard, N.F., and Simpson, B.K. (Ed). New York, Marcel Dekker. pp. 531-540.
30.Silva, J.F., Esposito, T.S., Marcuschi, M., Ribeiro, K., Cavalli, R.O., Oliveira, V., and Bezerra R.S. 2011. Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chemistry. 129: 777-782.
31.Senphan, T., Benjakul, S., and Kishimura, H. 2015. Purification and characterization of trypsin from hepatopancreas of Pacific white shrimp. Journal of Food Biochemistry. 39: 388-397.
32.Choi, S.M., Oh, E.S., Kim, D.S., Pyeun, J.H., Cho, D.M., Ahn, C.B., and Kim, H.R. 1998. Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp.-I. Purification of Protease from the Hepatopancreas of Penaeus japonicus. Fisheries and Aquatic Sciences. 1: 2. 201-208.
33.Green, N.M., and Neurath, H. 1953. The effects of divalent cations on trypsin. Journal of Biological Chemistry. 204: 379-390.
34.Glusker, J.P., Katz, A.K., and Bock, C.W. 1999. Metal ions in biological systems. Rigaku Journal. 16: 2. 8-16.
35.Abita, J.P., Delaage, M., Lazdunski, M., and Savrda, J. 1969. The Mechanism of Activation of Trypsinogen: The Role of the Four N‐Terminal Aspartyl Residues. European Journal of Biochemistry. 8: 3. 314-324.
36.Freitas-Júnior, A.C., Costa, H.M., Icimoto, M.Y., Hirata, I.Y., Marcondes, M., Carvalho Jr, L.B., Oliveira, V., and Bezerra, R.S. 2012. Giant Amazonian fish pirarucu (Arapaima gigas): Its viscera as a source of thermostable trypsin. Food chemistry. 133: 4. 1596-1602.
37.Rubingh, D.N. 1996. The influence of surfactants on enzyme activity. Current Opinion in Colloid & Interface Science. 1: 5. 598-603.
38.Finnegan, M., Linley, E., Denyer, S.P., McDonnell, G., Simons, C., and Maillard, J.Y. 2010. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. Journal of Antimicrobial Chemotherapy. 65: 10. 2108-2115.