بررسی هیپوکسی حاد و مزمن بر سیستم ایمنی و آنتی اکسیدانی ماهی کپور معمولی در سیستم بیوفلاک

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران

2 نویسنده مسئول، گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران

چکیده

استرس هیپوکسی یک شرایط محیطی نامطلوب برای ماهی است که می‌تواند اثرات متعددی بر ایمنی و آنتی اکسیدانی داشته باشد. هدف از مطالعه حاضر بررسی تأثیر استرس هیپوکسی (مزمن؛ 2 تا 5/2 میلی‌گرم در لیتر به‌مدت 36 ساعت) و (حاد؛ 013/0 تا 017/0 میلی‌گرم در لیتر به‌مدت 5/1 ساعت) در مقایسه با شاهد (6 تا 7 میلی‌گرم در لیتر) بر بقا، ایمنی و وضعیت اکسیداتیو کپور معمولی (Cyprinus carpio) در شرایط بیوفلوک بود. در مرحله اول، ماهی‌ها با میانگین وزن اولیه (75/0± 90/21 گرم) در 9 تانک (50 لیتری) به مدت 7 هفته در سیستم بیوفلوک نگهداری شدند. در مرحله دوم، ماهی‌ها تحت استرس هیپوکسی (مزمن و حاد) و شاهد (نورموکسی) قرار گرفتند. پس از استرس هیپوکسی، فعالیت لیزوزیم سرم، ایمونوگلوبولین کل و ACH50 به‌طور معنی‌داری کمتر و گلبول‌های قرمز (RBC)، هموگلوبین و هماتوکریت در تیمارهای استرس مزمن و حاد بالاتر بود (05/0P<). فعالیت SOD، CAT و GPX در سرم ماهیانی که در معرض استرس هیپوکسی قرار گرفتند بطور معنی‌داری در مقایسه با شاهد کاهش یافت (05/0P<). به‌طور کلی نتایج نشان داد، استرس هیپوکسی مزمن و حاد باعث تضعیف پارامترهای خونی ماهی کپور معمولی در سیستم بیوفلوک می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of chronic and acute hypoxia stress on the immune and antioxidant system of Common carp in biofloc system

نویسندگان [English]

  • Masoud Saberi 1
  • Hossein Adineh 2
  • Mohammad Harsij 1
  • Hojatallah Jafaryan 1
  • Rahman Patimar 1
1 Dept. of Fisheries Science, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Golestan, Iran
2 Corresponding Author, Dept. of Fisheries Science, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Golestan, Iran
چکیده [English]

Hypoxia stress is an unfavorable environmental condition for fish that can have several effects on immunity and antioxidant. The aim of the present study investigated the impact of hypoxia stress (Chronic; 2 to 2.5 mg/L for 36 hours) and (acute; 0.013 and 0.017 mg/L for 1.5 hours) compared to control (6 to 7 mg/L) on survival, immune and oxidative status Common carp (Cyprinus carpio) in biofloc conditions. In the first stage, the fish (21.90 ± 0.75 g) were stored in 9 tanks (50 liters) in the biofloc system for 7 weeks. In the second stage, the fish were subjected to hypoxia stress (chronic and acute) and control (normoxia). After hypoxia stress, serum lysozyme, total immunoglobulin, and ACH50 activities were significantly lower, and red blood cells (RBC), hemoglobin, and hematocrit were higher in chronic and acute stress treatments. The activity of SOD, CAT, and GPX in the fish serum exposed to hypoxic stress was significantly reduced compared to the control. In general, the results show that both chronic and acute hypoxic stress weakened the blood parameters of common carp in the biofloc system.

کلیدواژه‌ها [English]

  • Cyprinus carpio
  • biofloc technology
  • hypoxia stress
  • Immune-antioxidant reaction
1.Mustapha, U.F., Alhassan, A.W., Jiang, D.N., and Li, G.L. 2021. Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Rev. Aquac. 13: 4. 2076-2091.
2.Avnimelech, Y. 2009. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge, 182p.
3.Adineh, H., Naderi, M., Hamidi, M.K., and Harsij, M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunol. 95: 440-448.
4.Abdullah Mashai, M. 2000. Fish physiology in dense breeding systems (translation). Deputy of Aquaculture and Reproduction - General Directorate of Education and Extension, 302p.
5.Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summerfelt, S.T., and Vinci, B.J. 2002. Recirculating aquaculture systems. Cayuga Aqua Ventures Inc. 2th. Edition. USA. 769p.
6.Parker, T.M. 2013. Effects of the interaction of environmental factors (hypoxia and ammonia) on fish. M.Sc. Thesis, the Ohio State University, USA. 72p.
7.Verma, A.K., Rani, A.B., Rathore, G., Saharan, N., and Gora, A.H. 2016. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture. 457: 61-67.
8.Martins, G.B., da Rosa, C.E., Tarouco, F.D.M., and Robaldo, R.B. 2019. Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquac. Res. 50: 4. 1030-1039.
9.Debbarma, R., Biswas, P., and Singh, S.K. 2021. An integrated biomarker approach to assess the welfare status of Ompok bimaculatus (Pabda) in biofloc system with altered C/N ratio and subjected to acute ammonia stress. Aquaculture. 545: 737184.
10.Soaudy, M.R., Mohammady, E.Y., Elashry, M.A., Ali, M.M., Ahmed, N.M., Hegab, M.H., and Hassaan, M.S. 2021. Possibility mitigation of cold stress in Nile tilapia under biofloc system by dietary propylene glycol: Performance feeding status, immune, physiological responses and transcriptional response of delta-9-desaturase gene. Aquaculture. 538: 736519.
11.Liu, W., Lv, X., Ye, J., Tan, H., Luo, G., and Wan, Y. 2022. Effects of different biofloc sizes on the short‐term stress of Japanese seabass, Lateolabrax japonicus (Cuvier), juveniles reared in biofloc aquaculture systems. Aquac. Res.
53: 5. 1995-2003.
12.Wawrowski, A., Gerlach, F., Hankeln, T., and Burmester, T. 2011. Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J. Comp. Physiol B. 181: 2. 199-208.
13.Ellis, A.E. 1990. Lysozyme assays. In: Stolen, J.S., Fletcher, T.C., Anderson, D.P., Robertson, B.S., Van Muiswinkel, publication. pp. 101-103.
14.Siwicki, A. 1993. Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. Fish diseases diagnosis and preventions methods.
15.Sunyer, J.O., and Tort, L. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Vet. Immunol. Immunopathol. 45: 3. 333-345.
16.Borges, A., Scotti, L.V., Siqueira, D.R., Jurinitz, D.F., and Wassermann, G.F. 2004. Hematologic and serum biochemical values for jundia (Rhamdia quelen). Fish Physiol. Biochem. 30: 21-25.
17.Marklund, S., and Marklund, G. 1974. Involvement of the superoxyde anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxyde dismutase. Eur. J. Biochem. 47: 469-474.
18.Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys.82: 1. 70-77.
19.Baluchnejadmojarad, T., Roghani,M., and Mafakheri, M. 2010. Neuroprotective effect of silymarin in6-hydroxydopamine hemi-parkinsonian rat: involvement of estrogen receptors and oxidative stress. Neuroscience letters. 480: 3. 206-210.
20.Goth, L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta. 196: 2-3. 143-151.
21.Bani, A., and Haghi Vayghan, A. 2011. Temporal variations in haematological and biochemical indices of the
Caspian kutum, Rutilus frisii kutum. Ichthyological research. 58: 2. 126-133.
22.Bahrami Nejad Junghani, Z. 2009. Study of blood changes in the treatment of hypoxia in common carp (Cyprinus carpio). Department of Marine Biology, University of Guilan, M.Sc. thesis. 72p.
23.Rezakhani, S., Mohammadizadeh, F., Khara, H., Hooshang Bahri, A., and Ahmadnezhad, M. 2021. Evaluation of oxygen changes on survival, some stress indices and hematological and immunological factors in Caspian Sea salmon (Salmo trutta caspius). Aqua Physiol and Biotech. 9: 1. 96-77.
24.Yang, Y., Wang, Z., Wang, J., Lyu, F., Xu, K., and Mu, W. 2021. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposedto hypoxia. Fish Physiol. Biochem.47: 4. 919-938.
25.Fraser, J., De Mello, L.V., Ward, D.,Rees, H.H., Williams, D.R., Fang, Y., and Cossins, A.R. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc. Natl. Acad. Sci. 103: 8. 2977-2981.
26.Swift, D.J. 1982. Changes in selected blood component values of rainbow trout, Salmo gairdneri Richardson, following the blocking of the cortisol stress response with betamethasone and subsequent exposure to phenol or hypoxia. Journal of Fish Biology.21: 3. 269-277.
27.Boleza, K.A., Burnett, L.E., and Burnett, K.G. 2001. Hypercapnic hypoxia compromises bactericidal activity of fish anterior kidney cells against opportunistic environmental pathogens. Fish and Shellfish Immunol. 11: 593-610.
28.Kvamme, B.O., Gadan, K., Finne-Fridell, F., Niklasson, L., Sundh, H., Sundell, K., Taranger, G.L., and Evensen, Ø. 2013. Modulation of innate immune responses in Atlantic salmon bychronic hypoxia-induced stress. Fish and Shellfish Immunol. 34: 55-65.
29.Abdel-Tawwab, M., Hagras, A.E., Elbaghdady, H.M., and Monier, M.N. 2015. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquac Int. 23: 1261-1274.
30.Evans, J.J., Shoemaker, C.A., and Klesius, P.H. 2003. Effects of subletha dissolved oxygen stress on blood glucose and susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. J. Aquat. An. Health. 15: 202-208.
31.Abdel-Tawwab, M., Hagras, A.E., Elbaghdady, H.M., and Monier, M.N. 2014. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia, Oreochromis niloticus. J. Appl. Aquac. 26: 340-355.
32.Ni, M., Wen, H., Li, J., Chi, M., Ren,Y., Song, Z., and Ding, H. 2014. Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): cloning, characterization and expression pattern to crowding and hypoxia stress. Fish Physiol. Biochem. 40: 6. 1801-1816.
33.Bagherzadeh Lakani, F., Sattari, M., Kazemi, R., Yazdani Sadati, M.A., Pourdehghani, M., and Ashouri, G. 2015. Effects of Hypoxia, Normoxia and Hyperoxia on Hematological and Biochemical Parameters of Two Weight Classes in Farmed Great Sturgeon(Huso huso). J. Oceanogr. 6: 22. 59-68.
34.Terova, G., Rimoldi, S., Corà, S., Bernardini, G., Gornati, R., and Saroglia, M. 2008. Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture. 279: 150-159.
35.Fryer, J.L., and Lederis, K. 1986.Control of corticotropin secretion in teleost fishes. American Zoologist.26: 1017-1026.
36.Adineh, H., Jafaryan, H., Khademi Hamidi, M., Karimtabar, F.Z., and Sedaghat, Z. 2021. The effects of reducing the feeding rates on growth and feed performance, blood biochemical parameters, and water quality in bio-floc common carp (Cyprinus carpio)culture and clean systems. J. Fish.74: 3. 453-466.
37.Ebrahimi, A., Akrami, R., Najdegerami, E.H., Ghiasvand, Z., and Koohsari, H. 2020. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture. 516: 734639.
38.Haghparast, M.M., Alishahi, M., Ghorbanpour, M., and Shahriari, A. 2020. Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquac. Int. 28: 6. 2191-2206.
39.Dagoudo, M., Qiang, J., Bao, J.W., Tao, Y.F., Zhu, H.J., Tumukunde, E.M., and Xu, P. 2021. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco× P. vachelli) juveniles. Aquac Int. 29: 5. 2181-2196.
40.Wang, M., Wu, F., Xie, S., andZhang, L. 2021. Acute hypoxia and reoxygenation: Effect on oxidative stress and hypoxia signal transduction in the juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture. 531: 735903.