ارزیابی اثرات محیطی پرورش ماهی قزل‌آلای رنگین‌کمان Oncorhynchus mykiss (Walbaum, 1792) در قفس‌های جنوب دریای خزر

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، دانشجوی دکتری تولید و بهره‌برداری آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 استاد گروه تولید و بهره‌برداری آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استادیار پژوهشی، مرکز تحقیقات آب‌های داخلی استان گلستان، گرگان، ایران.

4 دانش‌آموخته دکتری بوم‌شناسی آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

هدف از این تحقیق، ارزیابی اثرات ‌محیطی پرورش ماهی قزل آلای رنگین کمان Oncorhynchus mykiss (Walbaum, 1792) در قفس است. تجزیه و تحلیل داده‌ها با استفاده از اطلاعات مربوط به ذخیره‌سازی ماهی قزل آلای رنگین کمان در قفس-های شناور مستقر در بخش جنوبی دریای خزر انجام گرفت. نتایج نشان داد که با توجه به برآورد میزان نیتروژن و فسفر خروجی قفس‌های مورد مطالعه و غلظت آنها در عمق 25 متری از سطح دریا، حداکثر ظرفیت پرورش ماهی در قفس حدود 100 تن بیوماس تولیدی می‌باشد. در بررسی میانگین اثرات با روش لئوپلد ایرانی نیز پرورش 100 تن ماهی قزل‌آلای رنگین‌کمان در قفس‌های دریایی دارای اثرات تخریبی ناچیز و ضعیف است. نتایج این تحقیق، موید حداکثر ظرفیت تولید حدود 100 تن در هر مجتمع پرورش در بخش جنوبی دریای خزر با حفظ فاصله حداقل 500 متری از مجتمع دیگر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Environmental Impact Assessment of Rainbow Trout Oncorhynchus mykiss (Walbaum, 1792) culture in south of Caspian Sea Cages

نویسندگان [English]

  • Alinaghi Maghsoudlou 1
  • Seyed Abbas Hoseini 2
  • Rasoul Ghorbani 2
  • Abdolazim Fazel 3
  • Saeed Esmaeilpoor poode 4
1 Corresponding Author, Ph.D. Student in Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Professor, Dept. of Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Research Assistant Prof., Golestan Inland Waters Research Center, Gorgan, Iran.
4 Ph.D. Graduate in Aquatic Ecology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

The aim of this study was to evaluate the environmental effects of growing rainbow trout Oncorhynchus mykiss (Walbaum, 1792) culture in cages. Data analysis was performed using information related to the storage of rainbow trout in floating cages located in the southern part of the Caspian Sea. The results showed that according to estimating the amount of nitrogen and phosphorus output of the studied cages and their concentration at a depth of 25 meters sea level, the maximum fish farming capacity in the cage is about 100 tons of biomass produced. In the study of the average effects by the Iranian Leopold method, breeding 100 tons of rainbow trout in sea cages has negligible and weak destructive effects. The results of this study confirm the maximum production capacity of about 100 tons in each breeding complex in the southern part of the Caspian Sea by maintaining a distance of at least 500 meters from other complexes.

کلیدواژه‌ها [English]

  • Caspian Sea
  • cage
  • environmental effects
  • rainbow trout
1.FAO (Food and Agriculture Organization), (2016). The State of World Fisheries and Aquaculture. Rome, Italy. 204p.
2.Shamseddini, S., & Jazayeri, S. (2012). Economic study of rainbow trout culture in cages (case study: Bidkan Dam). The 2nd national conference on cold-water fish farming development. ShahreKord, Iran. [In Persian]
3.Reza Nejad, R., Rafiei, G., & Bahramian, M. (2012). Cultivation of rainbow trout in a cage to increase the national production of aquatic animals. The 2nd national conference on cold-water fish farming development. ShahreKord, Iran. [In Persian]
4.Rowland, S. J., & Allan, G. L. (2006). Develoment of techniques and evaluation of the potential of cage culture of silver perch for cotton farms. 13th Australian Cotton Conference, Pp: 661-668.
5.Masser, M. (1988). What is Cage Culture? Southern Regional Aquaculture Center, Publication No. 160p.
6.Podemski, C. L., & Blanchfield, P. J. (2006). Overview of the environmental impacts of Canadian freshwater aquaculture. A Scientific Review of the Potential Environmental Effects of Aquaculture in Aquatic Ecosystems-5: Canadian Technical Report of Fisheries and Aquatic Sciences. Ontario, Department of Fisheries and Oceans Canada.
7.Gale, P. (1999). Addressing Concerns for Water Quality Impacts from Large-Scale Great Lakes Aquaculture. Roundtable Discussion Habitat Advisory Board of the Great Lakes Fishery Commission and Great Lakes Water Quality Board of the International Joint Commission. Toronto, Ontario Ministry of the Environment, Canada.
8.Loya, Y. (2007). How to influence environmental decision makers? The case of Eilat (Red Sea) coral reefs. Experimental Marine Biology and Ecology, 73, 35-53.
9.Yücel-Gier, G., Küçüksezgin, F., & Koçak, F. (2007). Effects of fish farming on nutrients and benthic community structure in the Eastern Aegean (Turkey). Aquaculture Research, 38 (3), 256-267.
10.Phillips, M. J., Beveridge, M. C. M., & Ross, L. G. (1985). The environmental impact of salmonids Cage culture on Inland fisheries: present status and future trends. Journal Fish Biology,27, 123-137.
11.Diaz, M. M., Temporetti, P. F., & Pedrozo, F. L. (2001). Response of phytoplankton to enrichment from cage fish farm waste in Alicura Reservoir (Patagonia, Argentina). Lakes Reservoirs. Research and Management, 6, 151-158.
12.Shakouri, M. (2003). Impact of cage culture on sediment chemistry. A case study in Mjoifjordur (Doctoral dissertation, Dissertation (SHILAT). Tahran, Iran.
13.Kashindye, B. B., Nishda, P., Kayanda, R., Ngupula, G. W., Mashafi, C. A., & Ezekiel, C. N. (2015). Environmental impacts of cage culturein Lake Victoria: the case of Shirati Bay‑Sota, Tanzania. SpringerPlus. 4 (1), 475.
14.Imanpour Namin, J., Safarbidi, K., Allaf Noveiriam, H., & Amini, K. (2021). Effects of cage culture of rainbow trout, Oncorhynchus mykiss on phytoplankton and zooplankton communities (Case study: Golestan Reservoir 1, Gorgan, Iran). Caspian Journal of Environmental Sciences. 20, 1-20.
15.Gowen, R. J., & Bradbury, N. B. (1987). The ecological impact of salmonid farming in coastal waters: a review. Oceanography and Marine Biology Annual Review. 25, 563-575.
16.Valizadeh, S., & Shekari, Z. (2015). Evaluation of Iranian Leopold Matrix application in the Environmental Impact Assessment (EIA) of solid waste management options in Birjand city. Iranian Journal of Health & Environ.8 (2), 249-262. [In Persian]
17.Makhdoum, M. (2008). Four points in evaluating the effects of development. Journal of Environment and Development, 2 (3), 9-12. [In Persian]
18.Alborzimanesh, M. (2011). A critique on common methods of summarizing and drawing conclusions from environmental impact assessment matrices. Journal of Environment and Development, 2 (3), 45-52. [In Persian]
19.Piri, H. (2011). Environmental Impact Assessment of the construction of Chah-Nime Dam in Zabul. Town and Country Planning, 3 (5), 145-163. [In Persian]
20.Esmaeilpour-Poodeh, S., & Van der Meer, J. (2021). An Introduction to Dynamic Energy Budget (DEB) Theory (1); Philosophy and Concepts. Basin Science Letter, 3, 195-203. [In Persian]
21.Lika, K., Kearney, M.R., Freitas, V., van der Veer, H. W., van der Meer, J., Wijsman, J. W. M., Pecquerie , L., & Kooijman, S. A. L. M. (2011). The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research.66, 270-277.
22.Marques, G. M., Augustine, S., Lika, K., Pecquerie, L., Domingos, T., & Koijman, S. (2018). The AmP project: Comparing species on the basis of dynamic energy budget parameters. Journal of Plos Computational Biology. 14 (5), 1-23.
23.Van der Meer, J. (2006). An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. Journal of Sea Research. 56, 85-102.
24.Miki, K., Sano, M., & Bailly, D. (1992). The role and problems of coastalfish culture in Japan. Oceanography,18, 385-395.
25.Esmaeilpour-Poodeh, S., Ghorbani, R., Salmanmahiny, A., Rezaei, H., & Kamyab, H. (2019). PhD Thesis: Environmental Impact Assessment of Suitable Sites for Sturgeon Farming in the Coasts of the Caspian Sea (Case Study: Golestan Province Coastal Area). Gorgan University of Agricultural Sciences and Natural Resources. 106p. [In Persian]
26.Islam, M. S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48-61.
27.Gorlach-Lira, K., Pacheco, C.,Carvalho, L. C. T., Melo Júnior, H. N., & Crispim, M. C. (2013). The influence of fish culture in floating net cageson microbial indicators of water quality. Brazilian Journal of Biology,73 (3), 457-463.
28.Ola, H., & Hall, O. J. (1994). Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture, 120, 305-318.
29.Hakanson, L. (1986). Environmental impact of fish cage farms. In: Aquaculture - an Industry for the Future. The Royal Swed. Acad. Eng. Sci., Stockholm, IVA Report, 308, 179-199.
30.Venturoti, G. P., Veronez, A. C.,Salla, R. V., & Gomes, L. C. (2014). Phosphorus, total ammonia nitrogen and chlorophyll a from fish cages in a tropical lake (Lake Palminhas, Espirito Santo, Brazil). Aquaculture Research,47 (2), 409-423.
31.Gondwe, M. J. S., Guildford, S. J., & Hecky, R. E. (2011). Carbon, nitrogen and phosphorus loadings from tilapia fish cages in Lake Malawi and factors influencing their magnitude. Journal of Great Lakes Research, 37, 93-101.
32.Tiziana, L. R., Simone, M., Eugenia, F., Benedetto, S., Gianluca, S., Roberto, D., & Antonio, M. (2002). Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 36, 713-721.
33.Stigebrandt, A. (1986). Modellberakninger av en fiscodlings miljobelastning. Report O-86004. Norwegian Institute of Water Research, Oslo. 28p.
34.Holby, O., & Hall, P. O. J. (1991). Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Marine Ecology Progress Series, 70, 263-272.
35.Kato, S., Hirobe, H., & Maegawo, T. (1985). On the essential sea water parameters to discriminate between red tide and non red tide by discriminate analysis. Bulletin of the Japanese Society of Scientific Fisheries, 51, 7-12.
36.Florida Department of Environmental Protection. (2003). Development of Florida Lake Nutrient Criteria: Summary and Synthesis. Tallahassee, USA.
37.ANZECC & ARMCANZ. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy Paper No 4. Canberra, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.
38.Farabi, S. M. V., Sharif Rouhani, M., Matinfar, A., Abdolhay, H., Negarestan, H., Pourang, N., Pourgholam, R., Fazli, H., Afraei, M., Nasrollah Zadeh, H., Behmanesh, S., Mohseni, M., Azari, A., Daryanabard, G., Najafpour, S., & Abedian, A. (2017). A comprehensive study of the southern Caspian Sea ecosystem with aim of establishing marine cage fish culture and aquaculture development. Iranian Fisheries Science Institute. 140p. [In Persian]
39.Kelly, L. A. (1992). Dissolved reactive phosphorus release from sediments beneath a freshwater cage aquaculture development in West Scotland. Hydrobiologia. 235/236, 567-572.
40.Meyer-Reil, L. A., & Koster, M. (2000). Eutrophication of marine waters: effects on bemthic microbial communities. Marine Pollution Bulletin, 41 (1-6), 255-263.
41.Farabi, S. M. V. (2014). A comprehensive study on the southern part of the Caspian Sea with the aim of establishing cages and developing marine aquaculture (first phase). Iran Fisheries Organization. 318p. [In Persian]