مدیریت جوامع میکروبی در سیستم آبزی‌پروری تولید توده زیستی

نوع مقاله : مقاله کامل علمی ترویجی

نویسنده

گروه شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، کرمان، ایران

چکیده

فن‌آوری نوین آبزی پروری پایدار بعنوان فن‌آوری توده ساز زیستی نامیده می‌شود که در آن مواد غذایی زائد، مواد آلی و ترکیبات تولید شده در سیستم توسط آبزی مصرف می‌شود. جوامع میکروبی در توده زیستی دو نقش مهم دارند: حفظ کیفیت آب با جذب ترکیبات نیتروژن و تولید پروتئین میکروبی که در نتیجه ضریب تبدیل غذایی و هزینه‌ها را کاهش می‌دهد. توده زیستی یک منبع طبیعی غنی از پروتئین و چربی که 24 ساعت شبانه روز در دسترس آبزی می‌باشد. مسئله حاضر در سیستم توده ساز زیستی مشکل کنترل و مدیریت ترکیب جوامع باکتریایی برای بدست آوردن کیفیت آب مطلوب و سلامتی آبزی است. بیش از 2000 گونه باکتریایی در آب حاوی توده زیستی به خوبی توسعه می‌یابد که بیشتر شامل جوامع فتواتوتروفیک، شیمواتوتروفیک و هتروتروفیک هستند و نقش اصلی را باکتری‌های هتروتروف بازی می‌کنند. این مطالعه مروری اطلاعات توصیفی در مورد جوامع میکروبی مرتبط با توده زیستی و تاثیراتش روی فلور میکروبی دستگاه گوارش آبزی ارائه می‌دهد که می‌تواند بیشتر در زمینه تحقیقات روی ایمنی، مقاومت به بیماری و تغذیه در آبزی‌پروری بکار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Microbial community management in biofloc production aquaculture system

نویسنده [English]

  • mohammad hossein khanjani
Dept. of Fisheries, Faculty of Natural Resources, University of Jiroft, Kerman, Iran
چکیده [English]

New sustainable aquaculture technology which is called biofloc technology (BFT) that consumed food waste, organic matter and compounds produced during the production by aquatic animals. Biofloc has two major roles: maintenance of water quality, by the uptake of nitrogen compounds and generating microbial protein which results in reducing feed conversion ratio and a decrease in feed costs. Biofloc is a rich natural source of protein and lipid available 24 hours per day for aquatic animals. The current problem in biofloc system is the difficulty in controlling and management of bacterial community composition for achieving optimal water quality and aquatic species health. More than 2000 bacterial species developed well in water containing biofloc., That most include photoautotrophic, chemoautotrophic and heterotrophic communities and heterotroph bacterium plays a key role in BFT. This review gives descriptive information about a bacterial community associated with biofloc, and its influences on aquatic species intestinal microbiota, which can further be applied to research on immunity, disease resistance and nutrition in aquaculture.

کلیدواژه‌ها [English]

  • biofloc
  • Microbial community
  • Water quality
  • Microbial protein
  • aquaculture
1.Alonso-Rodriguez, R., and Paez-Osuna, F. 2003. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219: 317-336.
2.Aly, S.M., Ahmed, Y.A., Ghareeb, A.A., and Mohamed, M.F. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology, 25: 1. 128-136.
3.Avnimelech, Y. 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182p.
4.Avnimelech, Y. 2012. Biofloc technology. A practical guide book.The World Aquaculture Society, Baton Rouge, 272p.
5.Avnimelech, Y., Kochva, M., and Diab, S. 1994. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Bamidgeh,46: 119-131.
6.Azim, M.E., Little, D.C., and Bron, J.E. 2008. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology,99: 3590-3599.
7.Bentzon, T.M., Sonnenschein, E.C., and Gram, L. 2016. Monitoring and managing microbes in aquaculture–Towards a sustainable industry. Microbial Biotechnology, 9: 5. 576-584.
8.Bland, J.A., and Brock, T.D. 1973.The marine bacterium Leucothrix mucor as an algal epiphyte. Marine Biology,23: 4. 283-292.
9.Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., and Pearson, D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525-537.
10.Cardona, E., Gueguen, Y., Magré, K., Lorgeoux, B., Piquemal, D., andPierrat, F. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology,16: 1. 1-9.
11.Crab, R., Lambert, A., Defoirdt, T., Bossier, P., and Verstraete, W.2010. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J. Appl. Microbiol.109: 5. 1643-1649.
12.Dang, H., and Lovell, C.R. 2002. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Applied Environmental Microbiology, 68: 2. 496-504.
13.Das, S., Mondal, K., and Haque, S. 2017. A review on application of probiotic, prebiotic and symbiotic for sustainable development of aquaculture. J. Entomol. Zool. Stud. 5: 2. 422-429.
14.De Schryver, P., Crab, R., Defoirdt, T., Boon, N., and Verstraete, W. 2008.The basics of bioflocs technology:The added value for aquaculture. Aquaculture, 277: 3. 125-137.
15.Emerenciano, M., Ballester, E., OCavalli, R., and Wasielesky, W.2012. Biofloc technology application as a food source in a limited water exchange nursery system for Pink shrimp Ferfantepanaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43: 3. 447-457.
16.Ferreira, G.S., Bolivar, N.C., Pereira, S.A., Guertler, C., do Nascimento Vieira, F., and Mouriño, J.L.P. 2015. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture, 448: 273-279.
17.Ferreira, M.G.P., Melo, F.P., Lima, J.P.V., Andrade, H.A., Severi, W., and Correia, E.S. 2017. Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Latin Amer. J. Aqua. Res. 45: 1. 167-176.
18.Focken, U., Groth, A., Coloso, R.M., and Becker, K. 1998. Contribution of natural food and supplemental feed to the gut content of Penaeus monodon Fabricius in a semi intensive pond system in the Philippines. Aquaculture, 164: 105-116.
19.Fouz, B., Toranzo, A.E., Milan, M., and Amaro, C. 2000. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J. Appl. Microbiol.88: 3. 531-5.
20.Gao, D.W., Tao, Y., and An, R. 2012. Digested sewage treatment using membrane-based process at different hydraulic retention times. Desalination J. 286: 187-92.
21.Gatesoupe, F.J. 1999. The use of probiotics in aquaculture. Aquaculture, 180: 1. 147-65.
22.Godoy, L.C., Odebrecht, C., Ballester, E., Martins, T.G., and Wasielesky, W.Jr. 2012. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931)in a heterotrophic culture system. Aquaculture International, 20: 559-569.
23.Hapsari, F. 2016. The effect of fermented and non-fermented biofloc inoculated with bacterium Bacillus cereus for catfish (Clarias gariepinus) juveniles. AACL Bioflux, 9: 2. 334-339.
24.Hargreaves, J.A. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34: 344-363.
25.Hjelm, M., Riaza, A., Formoso, F., Melchiorsen, J., and Gram, L. 2004. Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in a turbot larva (Scophthalmus maximus) rearing system. AppliedEnvironmental Microbiology, 70: 12. 7288-94.
26.Hu, X., Cao, Y., Wen, G., Zhang, X., Xu, Y., and Xu, W. 2017. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems. Aquaculture Research, 48: 6. 2691-2705.
27.In-Kwon, J. 2012. Biofloc as disease control. International Water Congress, Busan, Korea.
28.Ju, Z.Y., Forster, I.P., and Dominy, W.G. 2009. Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (Litopenaeus vannamei). Aquaculture, 292: 237-243.
29.Kerster, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E. 2006. Introduction to the Proteobacteria. The Prokaryotes.In: Proteobacteria: Alpha and Beta Subclasses, 5: 3-37.
30.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2017 Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system:the effect of adding differentcarbon sources. Aquaculture Research, 48: 4. 1491-1501.
31.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci. 15: 4. 1465-1484.
32.Khanjani, M.H., Alizadeh, M., Sajjadi M.M., and Sourinejad, I. 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (litopenaeus vannamei boone, 1931) post larvae with application of biofloc technology. Iran. Sci. Fish. J. 24: 2. 13-28. (In Persian)
33.Khanjani, M.H., Alizadeh, M., Sajjadi M.M., and Sourinejad, I. 2016. Production and evaluation of biofloc for use in zero- water exchange rearing system, J. Aquacul. Dev. 10: 1. 33-40. (In Persian)
34.Kim, M.S., Min, E., Kim, J.H., Koo, J.K., and Kang, J.C. 2015.Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in biofloc culture system using probiotics. Fish & shellfish immunology, 47: 1. 141-146.
35.Krummenauer, D., Samocha, T., Poersch, L., Lara, G., and Wasielesky, W. 2014. The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. J. World Aquacul. Soc. 45: 1. 3-14.
36.Loureiro, C.K., Wasielesky, W.Jr., and Abreu, P.C. 2012. The use of protozoan, rotifers and nematodes as live food for shrimp raised in BFT system. Atlantica, Rio Grande, 34: 1. 5-12.
37.Luis-Villaseñor, I.E., Voltolina, D., Audelo, J.M., Pacheco, M.R., and Herrera, V.E. 2016. Romero E. Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus Vannamei (Boone, 1931) experimental intensive culture. Ital. J. Anim. Sci. 14: 3. 332-337.
38.Maya, G.S., Monroy, D.M.C., Hamdan, P.A., Castro, M.J., and Rodríguez, M.G. 2016. Effect of two carbon sources in microbial abundance in a Biofloc culture system with Oreochromis niloticus (Linnaeus, 1758). Inter. J. Fish. Aqua. Stud. 4: 3. 421-427.
39.Miao, S., Zhu, J., Zhao, C., Sun, L., Zhang, X., and Chen, G. 2017. Effects of C/N ratio control combined with probiotics on the immune response, disease resistance, intestinal microbiota and morphology of Giant freshwater prawn (Macrobrachium rosenbergii). Aquaculture, 476: 125-133.
40.Monroy, M.C., De Lara, R., Castro, J., and Castro, G. 2013. Emerenciano M. Microbiology community composition and abundance associated to biofloc in tilapia aquaculture. Revista de Biología Marina y Oceanografía, 48: 3. 511-520.
41.Monroy, M.C., Rodriguez, G., Castro, J., and Becerril, D. 2015. Importance and function of microbial communities in aquaculture systems with no water exchange. Sci. J. Anim. Sci. 4: 9. 103-110.
42.Moss, S.M., Divakaran, S., and Kim, B.G. 2001. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp Litopenaeus vannamei (Boone). Aquaculture Research, 32: 125-131.
43.Pandiyan, P., Balaraman, D., Thirunavukkarasu, R., George, E.G.J., Subaramaniyan, K., and Manikkam, S. 2013. Probiotics in aquaculture. Drug Invention Today, 5: 1. 55-59.
44.Prentu, B.I., Giaccaglia, S.L.F., and Sempere, F.L. 2016. Aplicación de un probiótico compuesto por Bacillus amyloliquefaciens para mejorar el sistema inmunológico del camarón blanco Litopenaeus vannamei en sistemas de bioflóculos. Ciencias Ambientales. Gandia, 39.
45.Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S., and Hasty, J. 2012. Sensing array of radically
coupled genetic biopixels. Nature,481: 7379. 39-44.
46.Ray, A.J., Lewis, B.L., Browdy, C.L., and Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, super intensive culture systems. Aquaculture, 299: 89-98.
47.Ray, A.J., Seaborn, G., Leffler, J.W., Wilde, S.B., Lawson, A., and Browdy, C.L. 2010. Characterization of microbial communities in minimal exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture, 310: 130-138.
48.Valle, B.C.S., Dantas, E.M., Silva, J.F.X., Bezerra, R.S., Correia, E.S., and Peixoto, S.R.M. 2015. Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of Litopenaeus vannamei postlarvae. Aquaculture Nutrition, 21: 1. 105-112.
49.Wang, C.Z., Lin, G.R., Yan, T., Zheng, Z.P., Chen, B., and Sun, F.L. 2014. The cellular community in the intestine of the shrimp Penaeus penicillatus and its culture environments. Fisherise Science, 80: 5. 1001-1007.
50.Webster, N.S., Bourne, D.G., and Hall, M., 2006. Vibrionaceae infection in phyllosomas of the tropical rock lobster Panulirus ornatus as detected by fluorescence in situ hybridisation. Aquaculture, 255: 1. 173-8.
51.Woebken, D., Fuchs, B.M., Kuypers, M.M., and Amann, R. 2007. Potential interactions of practicle associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Applied Environmental Microbiology, 73: 14. 4648-57.
52.Yamashita, T., Emoto, T., Sasaki, N., and Hirata, K.I. 2016. Gut microbiota and coronary artery disease. Inter. Heart J. 57: 6. 663-671.
53.Zhang, M., Sun, Y., Chen, K., Yu, N., Zhou, Z., Chen, L., Du, Z., and Li, E. 2014. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture, 434: 449-55.
54.Zimba, P.V., Camus, A., Allen, E.H., and Burkholder, J.M. 2006. Co-occurrence of white shrimp, Litopenaeus vannamei, mortalities and microcystin toxin in a southeastern USA shrimp facility. Aquaculture, 261: 1048-1055.