بررسی تنوع لوکوس های صفات کمی (QTLs) مرتبط با صفت رشد در بچه ماهیان قزل آلای رنگین کمان پرورشی

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 استادیار پژوهشی مرکز تحقیقات ژنتیک و اصلاح نژاد ماهیان سردآبی شهید مطهری یاسوج، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، یاسوج، ایران

2 دانشیار دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

جهت اجرای این تحقیق از 30 مولد نر و ماده قزل آلای رنگین کمان استفاده شد. پس از پرورش به مدت شش ماه، استخراج ژنوم از بچه ماهیان صورت پذیرفت. تعداد 4 جفت لوکوس صفت کمی (QTL) در این تحقیق مورد استفاده قرار گرفت. آنالیزهای مولکولی نشانگرهای QTL نظیر پیوستگی صفت-نشانگر (آماره LD) به کمک نرم افزار MapChart 2.1 انجام پذیرفت. آنالیز ارتباط بین ژنوتیپ ها و صفت رشد با استفاده از مدل خطی GLMبه کمک نرم افزار SPSS 21.0 انجام شد. با توجه به نتایج این بررسی هتروزیگوسیتی مشاهده شده (Ho) و مورد انتظار (He) در جایگاههای QTL به ترتیب بین 699/0 - 354/0 مربوط به جایگاه OMM5140 و 836/0 - 568/0 مربوط به جایگاه OMM1268 بدست آمدند. میزان درصد واریانس (PV) نیز برای صفت وزن بدن در سن 30 و 180 روزگی به ترتیب 48/18 و 24/31 محاسبه شد. همچنین در بررسی حاضر اثر اپیستازی معنی داری بین جایگاههای QTL مورد مطالعه، مشاهده نگردید. در بررسی تعادل هاردی- واینبرگ نیز در بیشتر جایگاههای مورد بررسی انحراف از تعادل هاردی– واینبرگ را مشاهده شد (p <0.05). با توجه به تنوع جایگاه ژنی کنترل کننده صفات کمی نمونه های قزل آلای رنگین کمان و از طرفی اهمیت شناسایی لوکوس های صفات کمی مرتبط با رشد، لوکوس های صفات کمی مرتبط با صفت مزبور در خانواده های ماهی قزل آلای رنگین کمان را می توان در برنامه های آینده و یا مزارع پرورشی مختلف مورد استفاده قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of quantitative trait loci (QTL) variations for growth-related traits in farmed rainbow trout (Oncorhynchus mykiss)

نویسندگان [English]

  • Sajad Nazari 1
  • Hamed Paknejad 2
1 1Assistant Prof., Shahid Motahary Cold-Water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Yasouj, Iran
2 2Associate Prof., Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

In this study thirty male and female broodstock of rainbow trout (n=30) for generating full sibling collected in Cold-water Fishes Genetic and Breeding Research Center. We generated 13 different families using factorial mating design. Then juveniles were raised at the ponds until 6 months post-hatching. Genome extracted based on standard method and these individuals randomly selected for molecular analysis. Fin clips were cut and specimens were kept at -20̊ C until use. Four specific primers were used for rainbow trout and all the four QTL loci screened in this study were successfully amplified in all families. Statistical analyses including linkage disequilibrium (LD), association between genotypes and two quantitative traits including body weight (BW) and total length (TL) were performed using MapChart 2.1, GDA 1.1. General Linear Model (GLM) was performed with software SPSS 21.0. The results demonstrated the mean observed heterozygosity (Ho) and expected heterozygosity (HE) varied between 0.354 to 0.699 for locus OMM5140 and 0.568 to 0.836 for locus OMM1268, respectively. No significant epistatic interactions were identified between QTL markers. Proportion of phenotypic variation explained by each QTL (PV) for body weight at age 30 and 180 were 18.48 and 31.24, respectively. Hardy-Weinberg departure was observed for most loci from all farms and were disequilibrium (p < 0.05). The four QTL loci variation in rainbow trout is important to gain a better understanding of the genetics of production traits and for transferring genetic information and improved selective breeding program to farms in Iran

کلیدواژه‌ها [English]

  • Rainbow trout
  • QTL
  • marker assisted selection
  • selection
1.Almasy, L., and Blangero, J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Gen. 62: 1198-1211.
2.Ando, D., Kitamura, T., and Mizuno, S. 2005. Quantitative analysis of body silvering during smoltification in masu salmon using chromameter. North Am. J. Aquacul. 67: 160-166.
3.Barra, A., Christensen, K.A., Yoshida, G.M., Correa, K., Jedlicki, A., and Lhorente, J.P. 2018. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. Genes, Genomes, Genetics. 8: 1183-1194.
4.Chen, L., Peng, W., and Kong, S. 2018. Genetic mapping of head size related traits in common carp (Cyprinus carpio). Front. Gen. 9: 38.
5.Davidson, W.S. 2012. Adaptation genomics: next generation sequencing reveals a shared haplotype for rapid early development in geographicallyand genetically distant populations of rainbow trout. Mol. Ecol. 21: 219-222.
6.Feng, X., Yu, X., Fu, B., Wang, X.,Liu, H., and Pang, M. 2018. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics. 19: 1. 230-241.
7.Gao, G., Nome, T., Pearse, D.,Moen, T.M, Naish, K., and Thorgaard, G.H. 2018. A new single nucleotide polymorphism database for rainbow trout generated through whole genome resequencing. Front. Gen. 9: 147.
8.Gharbi, K., Gautier, A., Danzmann, R.G., Gharbi, S., and Sakamoto, T. 2006.A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organizationwith other salmonid fish. Genetics.172: 2405-2419.
9.Ghovati, N., Farahmand, H., Rafiee, Mirvaghefi, G.H., Mohammadtaheri, A.M., and Khalili, B. 2010. Use of microsatellite associated with body weight in screening of rainbow trout brood stock population (Oncorhynchus mykiss). Iran. J. Natur. Res. 63: 1. 19-28.
10.Gutierrez, A.P., Lubieniecki, K.P., Fukui, S., Withler, R.E., and Swift, B. 2014. Detection of quantitative trait loci (QTL) related to grilsing and late sexual maturation in Atlantic salmon (Salmo salar). Mar. Biotechnol. 16: 103-110.
11.Haidle, L., Janssen, J.E., Gharbi, K., Moghadam, H.K., Ferguson, M.M., and Danzmann, R.G. 2008. Determination
of quantitative trait loci (QTL) forearly maturation in rainbow trout (Oncorhynchus mykiss). Mar. Biotechnol. (NY), 10: 579-592.
12.Hansen, M., Nielsen, E., Ruzzante, D., Bouza, C., and Mensberg, K. 2000. Genetic monitoring of supportive breeding in brown trout (Salmo trutta L.) using microsatellite DNA markers. Can. J. Fish. Aquat. Sci. 57: 2130-2139.
13.Houston, R.D., Bishop, S.C., Hamilton, A., Guy, D.R.,, Tinch, A.E., and Taggart, J.B. 2009. Detection of QTL affecting harvest traits in a commercial Atlantic salmon population. Animal Gen. 40: 753-755.
14.Knott, S.A., Elsen, J.M., and Haley, C.S. 1996. Methods for multiple-marker mapping of quantitative trait loci in
half-sib populations. Theor. Appl. Gen. 93: 71-80.
15.Laghari, M.Y., Lashari, P., Zhang, X., Xu, P., Narejo, N.T., and Liu, Y. 2014. Mapping QTLs for swimming ability related traits in Cyprinus carpio L. Mar. Biotechnol. 16: 629-37.

16.Liu, S., Vallejo, R.L., Palti, Y., Gao, G., and Marancik, D.P. 2015. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front. Gen. 6: 1-10.

17.Martyniuk, C.J., Perry, G.M.L., Mogahadam, H.K., Ferguson, M.M.,and Danzmann, R.G. 2003. The genetic architecture of correlations among growth-related traits and male age at maturation in rainbow trout. J. Fish Biol. 63: 746-764.
18.Moghadam, H.K., Poissant, J., Fotherby, H., Haidle, L., and Ferguson, M.M. 2007. Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Mol. Gen. Genom. 277: 647-661.
19.Nazari, S., Jafari, V., Pourkazemi, M., Kolangi Miandare, H., and Abdolhay, H. 2016. Association between myostatin gene (MSTN-1) polymorphism and growth traits in domesticated rainbow trout (Oncorhynchus mykiss). Agric. Gen. 1: 109-115.
20.Neto, R.V.R., Yoshida, G.M., Lhorente, J.P., and Yanez, J.M. 2019. Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol. Genet. Genom. Pp: 1-9.
21.Nichols, K.M., Young, W.P., Danzmann, R.G., Robison, B.D., Rexroad, C., Noakes, M., Phillips, R.B., Bentzen, P., Spies, I., Knudsen, K., Allendorf, F.W., Cunningham, B.M., Brunelli, J., Zhang, H., Ristow, S., Drew, R., Brown, K.H., Wheeler,
P.A., and Thorgaard, G.H. 2003. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Animal Gen. 34: 102-115.
22.Palaiokostas, C., Kocour, M., Prchal, M., and Houston, R.D. 2018. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing. Front. Gen. 9: 82.
23.Palti, Y., Gao, G., Liu, S., Kent, M.P., Lien, S., Miller, M.R., Rexroad, C.E., and Moen, T. 2015. The Development and Characterization of a 57K SNP Array for Rainbow Trout. Mol. Ecol. Resour. 15: 662-672.
24.Pérez, L., Winkler, F., Díaz, N., Cárcamo, C., and Silva, N. 2001. Genetic variability in four hatchery strains of coho salmon, Oncorhynchus kisutch (Walbaum), in Chile. Aqua. Res. 32: 41-46.
25.Rodrguez, F.H., Caceres, G., Lhorente, J.P., Newman, S., Bangera, R., and Tadich, T. 2018. Genetic (co)variation in skin pigmentation patterns and growth in rainbow trout. Animal. 7: 1-8.
26.Salem, M., Panerum, B., Al-Tobasei, R., Abdouni, F., and Thorgaard, G.H.2015. Transcriptome Assembly, Gene Annotation and Tissue Gene Expression Atlas of the Rainbow Trout. PLoS ONE 10(3):e0121778.
27.Sonesson, A.K., and Meuwissen, T.H.E. 2009. Testing strategies for genomic selection in aquaculture breeding programs. Gen. Select. Evol. 41: 1-9.
28.Taylor, E.B., Tamkee, P., Keeley, E.R., and Parkinson, E.A. 2011. Conservation prioritization in widespread species: the use of genetic and morphological data to assess population distinctiveness in rainbow trout (Oncorhynchus mykiss) from british columbia, Can. Evol. Appl. 4: 100-115.
29.Templeton, N.S. 2004. Gene and cell therapy: therapeutic mechanisms and strategies. Marcel Dekker, New York.
30.Vallejo, R.L., Liu, S., Gao, G., Fragomeni, B.O., and Hernandez, A.G. 2017. Similar genetic architecture with shared and unique quantitative trait
loci for bacterial cold water disease resistance in two rainbow trout breeding populations. Front. Gen. 8: 156.
31.Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered.
93: 77-78.
32.Wang, C.M., Lo, L.C., Zhu, Z.Y., and Yue, G.H. 2006. A genome scan QTL for growth-related traits in an F1 family from a breeding population of Asian seabass. BMC Genomics. 7: 274.
33.Wringe, R.H., Devlin, M.M., Ferguson, H.K., Moghadam, D., Sakhrani, R.G., and Danzmann Brendan, F. 2010. Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss) BMC Genetics 11: 63-77.
34.Yeh, F.C., Yang, R.C., and Boyle,T. 1999. POPGENE, Version 1.31: Microsoft Window-Based Free Warefor Population Genetic Analysis. http://www.ualberta.ca/~fyeh.
35.Yoshida, G.M., Yanez, J.M., de Oliveira, C.A.L., Ribeiro, R.P., Lhorente, J.P., and de Queiroz, S.A. 2018. Mate selection allows changing the genetic variability of the progeny while optimizing genetic responseand controlling inbreeding. Aquaculture. 495: 409-414.
36.Zhao, N., Ai, W., Shao, Z., Zhu,B., Brosse, S., and Chang, J. 2005. Microsatellite assessment of Chinese sturgeon (Acipencer sinensis) genetic variability. J. Appl. Ichthyol. 21: 7-13.