توسعه آبزی‌پروری پایدار با استفاده از فن‌آوری توده‌سازی زیستی

نویسندگان

1 فارغ التحصیل. مدرس

2 موسسه تحقیقات شیلات

3 دانشگاه جیرفت

چکیده

با افزایش جمعیت جهان، صنایع تولید غذا از قبیل آبزی‌پروری نیاز هست که به خوبی گسترش یابد. یک فن‌آوری جدید که فن‌آوری توده‌سازی زیستی (بیوفلوک) نامیده می‌شود، می‌تواند اهداف آبزی پروری پایدرار را با استفاده از سیستم بدون تعویض آب دنبال کند. فن‌آوری توده‌سازی زیستی از سیستم‌های آبزی پروری سازگار با محیط زیست است که بعنوان یک سیستم جایگزین موثر مورد توجه قرار گرفته است، مواد مغذی را بطور پیوسته بازیافت و مجددا آنها را به عنوان غذا در دسترس آبزی قرار می‌دهد. این فن‌آوری براساس تنظیم نسبت کربن به نیتروژن برای توسعه جوامع میکروبی و توده زیستی می‌باشد که سبب شده میکروب‌ها نیتروژن غیرآلی دفع شده را برداشت و پروتئین میکروبی را تولید کنند. این توده‌های میکروبی سبب بهبود کیفیت آب می‌شوند. تعویض محدود آب، به حداقل رساندن پساب خروجی، حفظ کیفیت آب، تامین غذا، کاهش مصرف پروتئین در خوراک، رشد مطلوب، امنیت زیستی و تولید محصول ارگانیک از مزایای این فن‌آوری می‌باشد، که در دهه اخیر مورد توجه قرار گرفته است. در این مطالعه مروری معرفی فن‌آوری توده‌ساز زیستی به‌عنوان یک راهبرد مهم در ارتقاء و توسعه پایدار آبزی‌پروری کشور و استفاده مفید از منابع آبی، مورد بحث قرار خواهد گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of sustainable aquaculture by using biofloc technology

چکیده [English]

With increasing world population, food production industries such as aquaculture needs to be expanded very well. An innovative technology which is called biofloc technology (BFT) can follow the objectives of sustainable aquaculture by using zero-water exchange system. BFT is the eco-friendly aquaculture system that considered as an efficient alternative system since nutrients could be continuously recycled and reused as food for aquatic. This technology is basically dependent on adjustment of carbon/ nitrogen (C/N) ratio for development of microbial community and bioflocs which leads to microbes harvest excreted inorganic nitrogen and produce microbial proteins. These bioflocs improve water quality. Limited water exchange, minimizing the effluent, maintaining of water quality, food supply, reducing protein in food, growth improvement, biosecurity and production of organic products are the important of this technology that has greatly considered during these past two decades. In this review, introduction of biofloc technology will be discussed, that can be suggested as a strategy for enhancement and development of sustainable aquaculture in country and also as an appropriate way for beneficial use of water resources.

کلیدواژه‌ها [English]

  • sustainable
  • aquaculture
  • biofloc
  • Technology
1. Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., and Azim, M.E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance Freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture. 280: 117-123.
2. Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176: 227–235.
3. Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal
discharge bioflocs technology ponds. Aquaculture. 264: 140-147.
4. Avnimelech, Y. 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182p.
Avnimelech, Y. 2012. Biofloc Technology: A Practical Guide Book, 2nd
Edition. The World Aquaculture Society, Baton Rouge, Louisiana, United
States. 272p.
5. Avnimelech, Y., and Kochba, M. 2009. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture. 287: 163–168.
6. Ballester, E.L.C., Abreu, P.C., Cavalli, R.O., Emerenciano, M., Abreu, L., and
Wasielesky, W.Jr. 2010. Effect of practical diets with different protein levels on
the performance of Farfantepenaeus paulensis juveniles nursed in a zero
exchange suspended microbial flocs intensive system. Aquaculture Nutrition.
16: 163-172.
7. Boyd, C.E., and Tucker, C.S. 2009. Pond aquaculture water quality
management, Springer international editor, 700p.
8. Colt, J. 2006. Water quality requirements for reuse systems. Aquacultural
Engineering. 34(3): 143–156.
9. Crab, R., Chielens, B., Wille, M., Bossier, P., and Verstraete, W. 2010. The
effect of different carbon sources on the nutritional value of bioflocs, a feed for
Macrobrachium rosenbergii postlarvae. Aquaculture Research. 41: 559-567.
10.Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W. 2012. Biofloc technology
in aquaculture: beneficial effects and future challenges. Aquaculture. 356–357:
351–356.
11.Craig, S., and Helfrich, L.A. 2002. Understanding fish nutrition, feeds and
feeding (Publication 420–256). Virginia Cooperative Extension, Yorktown
(Virginia). 4p.
12.De Schryver, P., Crab, R., Defoirdt, T., Boon, N., and Verstraete, W. 2008. The
basics of bioflocs technology: the added value for aquaculture. Aquaculture.
277: 125–137.
13.Decamp, O., Cody, J., Conquest, L., Delanoy, G., and Tacon, A.G.J. 2003.
Effect of salinity on natural community and production of Litopenaeus
vannamei (Boone) within experimental zero-water exchange culture systems.
Aquaculture Research. 34: 345-355.
14.Ebeling, J.M., Timmons, M.B., and Bisogni, J.J. 2006. Engineering analysis of
the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of
ammonia-nitrogen in aquaculture production systems. Aquaculture. 257: 346–
358.
15.Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., and Wasielesky, W. 2012.
Biofloc technology application as a food source in a limited water exchange
nursery system for Pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817).
Aquaculture Research. 43: 447–457.
16.Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., and Wasielesky, W. 2011.
Effect of biofloc technology (BFT) on the early postlarval stage of Pink shrimp
Farfantepenaeus paulensis: growth performance, floc composition and salinity
stress tolerance. Aquaculture International. 19: 891-901.
17.Emerenciano, M., Cuzon, G., Arévalo, M., Miquelajauregui, M.M., and
Gaxiola, G. 2013. Effect of short-term fresh food supplementation on
reproductive performance, biochemical composition and fatty acid profile of
Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquaculture
International. 21: 987–1007.
18.Gao, L., Shan, H.W., Zhang, T.W., Bao, W.Z., and Ma, S.J. 2012. Effects of
carbohydrate addition on Litopenaeus vannamei intensive culture in a zerowater exchange system. Aquaculture. 343: 89-96.
19.Garatun-Tjeldsto, O., Ottera, H., Julshamn, K., Austreng, E. 2006. Food
ingestion in juvenile cod estimated by inert lanthanide markers- effects of food
particle size. Ices Journal of Marine Science. 63(2): 311–319.
20.Hargreaves, J.A. 2006. Photosynthetic suspended-growth systems in
aquaculture. Aquacultural Engineering. 34: 344–363.
21.Hargreaves, J.A. 2013. Biofloc production system for aquaculture. Southern
Regional Aquaculture Center Publication No, 4503.
22.In-Kwon, J. 2012. Biofloc as disease control. International Water Congress,
Busan, Korea.
23.Izquierdo, M., Forster, I., Divakaran, S., Conquest, L., Decamp, O., and Tacon,
A., 2006. Effect of green and clear water and lipid source on survival, growth
and biochemical composition of Pacific white shrimp Litopenaeus vannamei.
Aquaculture Nutrition. 12: 192–202.
24.Jiang, S. 2010. Aquaculture, capture fisheries, and wild fish stocks. Resource
Energy Economics. 32: 65–77.
25.Ju, Z.Y., Forster, I., Conquest, L., and Dominy, W. 2008a. Enhanced growth
effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc
or floc fractions to a formulated diet. Aquaculture Nutrition. 14: 533–543.
26.Ju, Z.Y., Forster, I., Conquest, L., Dominy, W., Kuo, W.C., and Horgen, F.D.,
2008b. Determination of microbial community structures of shrimp floc
cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture
Research. 39: 118–133.
27.Kang'ombe, J., Likongwe, J.S., Eda, H., and Mtimuni, J.P. 2007. Effect of
varying dietary energy level on feed intake, feed conversion, whole-body
composition and growth of Malawian tilapia, Oreochromis shiranus-Boulenger.
Aquaculture Research. 38(4): 373–380.
28.Khanjani, M.H., Alizadeh, M., Sajjadi M.M., and Sourinejad, I. 2015. Effects of
different carbon sources on water quality, growth performance and survival of
Western white shrimp (Litopenaeus vannamei Boone, 1931) in zero-water
exchange system. Iranian Scientific Fisheries Journal. 24(3): 77-91. (In Persian)
29.Khanjani, M.H., Alizadeh, M., Sajjadi, M.M., and Sourinejad, I. 2015. Effect of
different feeding levels on water quality, growth performance and survival of
western white shrimp (litopenaeus vannamei boone, 1931) post larvae with
application of biofloc technology. Iranian Scientific Fisheries Journal. 24(2):
13-28. (In Persian)
30.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2016. Nursery
performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931)
cultivated in a biofloc system: the effect of adding different carbon sources.
Aquaculture Research. 1–11, doi: 10.1111/are.12985.
31.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2016. Study on
nursery growth performance of Pacific white shrimp (Litopenaeus vannamei
Boone, 1931) under different feeding levels in zero water exchange system.
Iranian Journal of Fisheries Sciences. 15(4): 1465-1484.
32.Kuhn, D.D., and Lawrence, A. 2012. Ex-situ biofloc technology. In:
Avnimelech, Y., editor. Biofloc technology- a practical guide book, 2nd ed.,
The World Aquaculture Society, Baton Rouge, Louisiana, USA. Pp: 217-230.
33.Kuhn, D.D., Boardman, G.D., Lawrence, A.L., Marsh, L., Flick, G.J. 2009.
Microbial floc meals as a replacement ingredient for fish meal and soybean
protein in shrimp feed. Aquaculture. 296: 51–57.
34.Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., and
Flick, G.J. 2010. Evaluation of two types of biofloc derived from biological
treatment of fish effluent as feed ingredients for Pacific white shrimp,
Litopenaeus vannamei. Aquaculture. 303: 28–33.
35.Kumar, M., and Lin, J.G. 2010. Co-existence of anammox and denitrification
for simultaneous nitrogen and carbon removal strategies and issues. Journal of
Hazardous Materials. 178: 1–9.
36.Lin, S., Mai, K., and Tan, B. 2007. Effects of exogenous enzyme
supplementation in diets on growth and feed utilization in tilapia, Oreochromis
niloticus×O. aureus. Aquaculture Research. 38: 1645–1653.
37.Maicá, P.F., Borba, M.R., and Wasielesky, W.Jr. 2012. Effect of low salinity on
microbial floc composition and performance of Litopenaeus vannamei (Boone)
juveniles reared in a zero-water-exchange super-intensive system. Aquaculture
Research. 43: 361–370.
38.Martins, A.M.P., Heijnen, J.J., Van Loosdrecht, M.C.M. 2003. Effect of
dissolved oxygen concentration on sludge settleability. Applied Microbiology
and Biotechnology. 62: 586–593.
39.McIntosh, R.P. 2000. Changing paradigms in shrimp farming. IV. Low protein
feeds and feeding strategies. The Global Aquaculture Advocate. 44–50 (April).
40.Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M.,
Clay, J., Folke, C., Lubchenco, J., Mooney, H., and Troell, M. 2000. Effect of
aquaculture on world fish supplies. Nature. 405: 1017 -1024.
41.Péron, G., Mittaine, J.F., and Le Gallic, B. 2010. Where do fishmeal and fish oil
products come from? An analysis of the conversion ratios in the global fishmeal
industry. Marine Policy. 34: 815–820.
42.Piedrahita, R.H. 2003. Reducing the potential environmental impact of tank
aquaculture effluents through intensification and recirculation. Aquaculture.
226: 35–44.
43.Rahman, M.M., Nagelkerke, L.A.J., Verdegem, M.C.J., Wahab, M.A., and
Verreth, J.A.J. 2008. Relationships among water quality, food resources, fish
diet and fish growth in polyculture ponds: a multivariate approach. Aquaculture.
275: 108–115.
44.Rakocy, J.E., Bailey, D.S., Thoman, E.S., and Shultz, R.C. 2004. Intensive tank
culture of tilapia with a suspended, bacterial based treatment process: new
dimensions in farmed tilapia. In: Bolivar, R., Mair, G., Fitzsimmons, K.,
editors. Proceedings of the Sixth International Symposium on Tilapia in
Aquaculture. Pp: 584–596.
45.Ray, A. 2012. Biofloc technology for super-intensive shrimp culture. In:
Avnimelech, Y., editor. Biofloc technology- a practical guide book, 2nd ed.,
The World Aquaculture Society, Baton Rouge, Louisiana, USA. Pp: 167-188.
46.Ray, J.A., Lewis, B.L., Browdy, C.L., and Leffler, J.W. 2010. Suspended solids
removal to improve shrimp (Litopenaeus vannamei) production and an
evaluation of a plant-based feed in minimal-exchange, super intensive culture
systems. Aquaculture. 299: 89-98.
47.Sohier, L. 1986. Microbiologie appliquée à l’aquaculture marine intensive. Pp:
119. Thèse Doctorat d’Etat, Université Aix-Marseille II Marseille, France.
48.Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, I.P., and
Decamp, O.E. 2002. Effect of culture system on the nutrition and growth
performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed
different diets. Aquaculture Nutrition. 8: 121–139.
49.Timmons, M.B., Holder, J.L., and Ebeling, J.M. 2006. Application of
microbead biological filters. Aquacultural Engineering. 34: 332–343.
50.Valle, B.C.S., Dantas, Jr., Silva, J.F.X., Bezerra, R.S., Correia, E.S., Peixoto,
S.R.M., and Soares, R.B. 2015. Replacement of fish meal by fish protein
hydrolysate and biofloc in diets of Litopenaeus vannamei postlarvae.
Aquaculture Nutrition. 21: 105–112.
51.Wasielesky, W., Atwood, H., Stokes, A., and Browdy, C.L. 2006. Effect of
natural production in a zero exchange suspended microbial floc based superintensive culture system for white shrimp Litopenaeus vannamei. Aquaculture.
258: 396-403.
52.Wasielesky, W.Jr., Froes, C., Fóes, G., Krummenauer, D., Lara, G., and
Poersch, L., 2013. Nursery of Litopenaeus vannamei reared in a biofloc system:
the effect of stocking densities and compensatory growth. Journal of Shellfish
Research. 32(3): 799-806.
53.Wilen, B.M., Nielsen, J.L., Keiding, K., Nielsen, P.H. 2000. Influence of
microbial activity on the stability of activated sludge flocs. Colloids and
Surfaces Biointerfaces. 18(2): 145–156.
54.Xu, W.J., and Pan, L.Q. 2012. Effects of bioflocs on growth performance,
digestive enzyme activity and body composition of juvenile Litopenaeus
vannamei in zero-water exchange tanks manipulating C/N ratio in feed.
Aquaculture. 356: 147–152.
55.Xu, W.J., and Pan, L.Q. 2013. Dietary protein level and C/N ratio manipulation
in zeroexchange culture of Litopenaeus vannamei: Evaluation of inorganic
nitrogen control, biofloc composition and shrimp performance. Aquaculture
Research. 45: 1842–1851.
56.Xu, W.J., Pan, L.Q., Sun, X.H., and Huang, J. 2013. Effects of bioflocs on
water quality, and survival, growth and digestive enzyme activities of
Litopenaeus vannamei (Boone) in zero-water exchange culture tanks.
Aquaculture Research. 44: 1093-1102.