آنالیز الگوی تنوع زیستی ماهیان آب شیرین حوضه دریاچه ارومیه در ارتباط با پارامترهای زیست اقلیمی

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 دانش آموخته دکتری علوم و مهندسی شیلات، گروه شیلات، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران،تهران، ایران.

2 نویسنده مسئول، استاد گروه شیلات، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

3 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

چکیده

اکوسیستم‌های آب شیرین نقش مهمی در تنظیم اکولوژیکی و حفاظت از تنوع زیستی کره زمین ایفا می‌کنند. ماهیان آب شیرین پس از دوزیستان، در معرض خطرترین گروه مهره‌داران هستند. جوامع ماهیان آب شیرین تحت تأثیر پارامترهای زیست‌اقلیمی متنوعی قرار می‌گیرند. هدف مقاله حاضر استفاده از آنالیز مختصات اصلی دوگانه به منظور بررسی ارتباط بین تنوع زیستی جوامع ماهیان آب شیرین در حوضه آبریز دریاچه ارومیه و پارامترهای زیستی‌اقلیمی است. در این آنالیز صفات کارکردی گونه‌ها نیز گنجانیده شد. برای انجام این مطالعه در رودخانه‌های حوضه ارومیه داده‌های حضور ماهی شامل جنس، گونه و مختصات جغرافیایی ثبت و داده‌های تکراری از نظر طول و عرض جغرافیایی و گونه حذف گردید. متغیرهای زیست‌اقلیمی از وب‌سایت bioclim دریافت شدند. متغیرهای زیست اقلیمی که دارای همبستگی پیرسون بالا حذف شدند. مطالعه حاضر نشان داد که گونههای ماهی تقریباً به صورت مشابهی در گرادیان‌های پارامترهای زیست اقلیمی توزیع شده‌اند و همچنین توزیع آنها مستقل از صفات کارکردی شان بود. در نتیجه، پارامترهای زیست اقلیمی سهم ناچیزی در پراکنش ماهیان حوضه دریاچه ارومیه دارند و پارمترهای موجود در حوضه آبخیز ارومیه مسئول توزیع ماهیان در این ناحیه باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Biodiversity Pattern in Freshwater Fish Communities of the Urmia Lake Basin: A Bioclimatic Perspective

نویسندگان [English]

  • Hamed Shabanloo 1
  • Hadi Poorbagher 2
  • Soheil Eagderi 3
1 Ph.D. Graduate of Fisheries Science and Engineering, Dept. of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
2 Corresponding Author, Professor, Dept. of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
3 Associate Prof., Dept. of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
چکیده [English]

Freshwater ecosystems play a crucial role in ecological regulation and biodiversity conservation on Earth. Freshwater fish, after amphibians, are the most endangered group of vertebrates. Freshwater fish communities are influenced by various bio-climatic parameters. The aim of this article is to use dual principal coordinate analysis to investigate the relationship between biodiversity of freshwater fish communities in the Lake Urmia basin and bio-climatic parameters. Functional traits of species were also included in this analysis. To conduct this study, fish presence data, including genus, species, and geographic coordinates, were recorded in rivers of the Urmia basin, and duplicate data were removed based on longitude, latitude, and species. Bio-climatic variables were obtained from the Bioclim website. Bio-climatic variables with high Pearson correlation were removed. This study showed that fish species are distributed similarly along gradients of bio-climatic parameters, and their distribution is independent of their functional traits. Therefore, bio-climatic parameters have a negligible impact on the distribution of fish in the Lake Urmia basin, and the parameters present in the Urmia watershed are responsible for the distribution of fish in this region.

کلیدواژه‌ها [English]

  • Urmia lake basin
  • fish assemblages
  • bioclimatic parameters
  • freshwater fishes
  • canonical correspondence analysis
1.Triana, J. S. A., Chu, M. L., & Stein, J. A. (2021). Assessing the impacts of agricultural conservation practices on freshwater biodiversity under changing climate. Ecological Modelling, 453, 109604.
2.Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., & Edwards, G. (2020). Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience, 70(4), 330-342.
3.Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182.
4.Su, G., Logez, M., Xu, J., Tao, S., Villéger, S., & Brosse, S. (2021). Human impacts on global freshwater fish biodiversity. Science, 371(6531), 835-838.
5.Cooke, S. J., Twardek, W. M., Lynch, A. J., Cowx, I. G., Olden, J. D., Funge-Smith, S., Lorenzen, K., Arlinghaus, R., Chen, Y., & Weyl, O. L. (2021). A global perspective on the influence of the COVID-19 pandemic on freshwater fish biodiversity. Biological Conservation, 253, 108932.
6.Tidwell, J. H., & Allan G. L. (2001). Fish as food: aquaculture’s contribution, ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO reports, 21, 1-6.
7.Kwon, Y. S., Bae, M. J., Hwang, S. J., Kim, S. H., & Park, Y. S. (2015). Predicting potential impacts of climate change on freshwater fish in Korea. Ecological Informatics, 29, 156-165.
8.Jia, Y., Wang, L., Qu, Z., Wang, C., & Yang, Z. (2017). Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environmental Science and Pollution Research, 24, 9379-9386.
9.Clavel, J., Poulet, N., Porcher, E., Blanchet, S., Grenouillet, G., Pavoine, S., Biton, A., Seon-Massin, N., Argillier, C., & Daufresne, M. (2013). A new freshwater biodiversity indicator based on fish community assemblages. PLoS One, 8(11), e80968.
10.Tisseuil, C., Vrac, M., Grenouillet, G., Wade, A. J., Gevrey, M., Oberdorff, T., Grodwohl, J. B., & Lek, S. (2012). Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity. Science of the Total Environment, 424, 193-201.
11.Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., & Pecl, G. (2011). Long‐term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography, 20(1), 58-72.
12.Knouft, J. H., & Ficklin, D. L. (2017). The Potential impacts of climate change on biodiversity in flowing freshwater systems. Annual Review of Ecology, Evolution, and Systematics, 48(1), 111-133.
13.Servili, A., Canario, A. V., Mouchel, O., & Muñoz-Cueto, J. A. (2020). Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. General and Comparative Endocrinology, 291, 113439.
14.Olusanya, H. O., & van Zyll de Jong, M. (2018). Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador. PloS one, 13(12), e0208182.
15.Ruiz-Navarro, A., Gillingham, P. K., & Britton, J. R. (2016). Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. Biological Conservation, 203, 33-42.
16.Cheung, W. W., Lam, V. W., & Pauly, D. (2008). Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. In: Cheung, W. W. L., Lam, V. W. Y., Pauly, D. (eds.) Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. Fisheries Centre Research Report. 16(3).
17.Thioulouse, J., Dray, S., Dufour, A. B., Siberchicot, A., Jombart, T., & Pavoine, S. (2018). Multivariate analysis of ecological data with ade4. Springer, 329 p.
18.Ahmadaali, J., Barani, G. A., Qaderi, K., & Hessari, B. (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water, 10(2), 160.
19.Rezapour, S., Asadzadeh, F., Nouri, A., Khodaverdiloo, H., & Heidari, M. (2022). Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin. Scientific Reports, 12(1), 17455.
20.Balkanlou, K. R., Mueller, B., Cord, A. F., Panahi, F., Malekian, A., Jafari, M., & Egli, L. (2020). Spatiotemporal dynamics of ecosystem services provision in a degraded ecosystem: A systematic assessment in the Lake Urmia basin, Iran. Science of the Total Environment, 716, 137100.
21.Feizizadeh, B., Lakes, T., Omarzadeh, D., Sharifi, A., Blaschke, T., & Karimzadeh, S. (2022). Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran. Scientific reports, 12(1), 6237-6237.
22.Ashrafi, S., Kerachian, R., Pourmoghim, P., Behboudian, M., & Motlaghzadeh, K. (2022). Evaluating and improving the sustainability of ecosystem services in river basins under climate change. Science of the Total Environment, 806, 150702.
23.Ghasemi, H., Roudbar, A. J., Eagderi, S., Abbasi, K., Vatandoust, S., & Esmaeili, H. R. (2015). Ichthyofauna of Urmia basin: Taxonomic diversity, distribution and conservation. Iranian Journal of Ichthyology, 2(3), 177-193.
24.Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119, 443-464.
25.Eagderi, S., Mouludi-saleh, A., esmaeli, H. R., Sayyadzadeh, G., & nasri, M. (2022). Freshwater lamprey and fishes of Iran; a revised and updated annotated checklist-2022. Turkish Journal of Zoology, 46(6), 500-522.
26.Coad, B. W. (1998). Systematic biodiversity in the freshwater fishes of Iran. Italian Journal of Zoology, 65(S1), 101-108.
27.Coad, B. W. (1995). Fresh water fishes of Iran. Acta scientiarum naturalium Academiae Scientiarum Bohemicae, Brno, 29(1), 1-64.
28.Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. USA: Springer.
29.Kuhn, M. (2019). The caret Package. Retrieved March 6, 2019, from http:// topepo.github.io/caret/index.html.
30.Paul, B., Faruque, M. H., & Ahsan, D. A. (2014). Consequences of climate change on fish biodiversity in the river Turag, Bangladesh: A community perception study. World Journal of Fish and Marine Sciences, 6(2), 136-141.
31.Peluso, L. M., Mateus, L., Penha, J., Súarez, Y., & Lemes, P. (2023). Climate change may reduce suitable habitat for freshwater fish in a tropical watershed. Climatic Change, 176(4), 44.
32.Burbank, J., Gao, K., & Power, M. (2023). Factors influencing the home range of freshwater fishes. Ecology of Freshwater Fish, 32(4), 916-925.
33.Comte, L., & Grenouillet, G. (2015). Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and biotic velocities. Diversity and Distributions, 21(9), 1014-1026.
34.Pishkahpour, Z., Poorbagher, H., & Eagderi, S. (2019). Effects of ecological conditions and physical variables of the Dinvarab River in the Kermanshah Province on the habitat suitability index of Alburnus sellal Heckel (1843). Journal of Fisheries, 71(4), 317-328.
35.Shabanloo, H., Poorbagher, H., & Eagderi, S. (2021). Effects of environmental parameters on morphological traits of Squalius namak in the Jajrood River. Aquaculture Sciences, 9(1), 172-181.
36.Mancinelli, G., Mali, S., & Belmonte, G. (2019). Species richness and taxonomic distinctness of zooplankton in ponds and small lakes from Albania and North Macedonia: the role of bioclimatic factors. Water, 11(11), 2384.
37.Montoya, J. M., & Raffaelli, D. (2010). Climate change, biotic interactions
and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2013-2018.
38.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(supplement_2), 19729-19736.
39.Buisson, L., Thuiller, W., Lek, S., Lim, P. U. Y., & Grenouillet, G. (2008). Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 14(10), 2232-2248.
40.Pletterbauer, F., Melcher, A. H., Ferreira, T., & Schmutz, S. (2015). Impact of climate change on the structure of fish assemblages in European rivers. Hydrobiologia, 744, 235-254.