1.Barnes, R. D. )1987(. Invertebrate Zoology, 5th edition. Saunders College Publishing, USA.
2.Campbell, A., & Dawes, J. )2005(. Encyclopedias of Underwater Life, first edition. Oxford University Press, London, 2, 20-21.
3.Hanson, J. R. (2003). Natural products: the secondary metabolites. Royal Society of Chemistry, 17, 125-132.
4.McCarthy, P. J., & Pomponi, S. A. (2004). A search for new pharmaceutical drugs from marine organisms, 8 (4), 18-27.
5.Paul, M., Poyan Mehr, A., & Kreutz, R. (2006). Physiology of local renin-angiotensin systems. Physiological reviews, 86 (3), 747-803.
6.Mehbub, M. F., Lei, J., Franco, C., & Zhang, W. (2014). Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactive. Marine Drugs 12 (8), 4539-4577.
7.Thoms, C., Schupp, P. J., Custódio, M. R., Lôbo-Hajdu, G., Hajdu, E., & Muricy, G. (2007). Chemical defense strategies in sponges: a review. Porifera research: biodiversity, Innovation and sustainability, 28, 627-637.
8.Laport, M. S., Santos, O. C. S., & Muricy, G. (2009). Marine sponges: potential sources of new antimicrobial drugs. Current pharmaceutical biotechnology, 10 (1), 86-105.
9.Kraljevic, S., Sedic, M., Scott, M., Gehrig, P., Schlapbach, R., Pavelic, K. (2006). Casting light on molecular events underlying anti-cancer drug treatment: what can be seen from the proteomics point of view? Cancer Treatment Reviews, 32, 619-629.
10.Jimeno, J., Faircloth, G., Fernández Sousa-Faro, J. M., Scheuer, P., & Rinehart, K. (2004). New marine derived anticancer therapeutics- Ajouney from the sea to clinical trials. Marine Drugs, 2, 14-29.
11.Nazemi, M. (2016). Review of the cytotoxic activity (anticancer) of marine sponges. Utilization and Cultivation of Aquatics, 5 (4), 71-80.
12.Zheng, L., Yan, X., Han, X., Chen, H., Lin, W., Lee, F. S., & Wang, X. (2006). Identification of norharman as the cytotoxic compound produced by the sponge (Hymeniacidon perleve)-associated marine bacterium Pseudoalteromonas piscicida and its apoptotic effect on cancer cells. Biotechnol. Appl. Biochem. 44, 135-142.
13.Essack, M., Bajic, V. B., & Archer, J. A. (2011). Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment. Marine. Drugs. 9, 1580-1606.
14.Nazemi, M., Khaledi, M., Golshan, M., Ghorbani, M., Amiran, M. R., Darvishi, A., & Rahmanian, O. (2020). Cytotoxicity activity and druggability studies of sigmasterol isolated from marine sponge dysidea avara against oral epithelial cancer cell (KB/C152) and t-lymphocytic leukemia cell line (Jurkat/E6-1). Asian Pacific Journal of Cancer Prevention: APJCP, 21 (4), 997.
15.Heidary Jamebozorgi, F., Yousefzadi, M., Firuzi, O., Nazemi, M., & Jassbi, A. R. (2019). In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea. DARU Journal of Pharmaceutical Sciences, 27, 121-135.
16.Mahdian, D., Iranshahy, M., Shakeri, A., Hoseini, A., Yavari, H., Nazemi, M., & Iranshahi, M. (2015). Cytotoxicity evaluation of extracts and fractions of five marine sponges from the Persian Gulf and HPLC fingerprint analysis of cytotoxic extracts. Asian Pacific Journal of Tropical Biomedicine, 5 (11), 896-901.
17.Nazemi, M., Karimzadeh R., Aghaei Dargiri S., Ghaffari, H., & Ghorbani, M. (2022). Extraction and characterization of phytol fraction from marine sponge Dysidea avara and evaluation of antimicrobial and cytotoxic activities. Journal of Oceanography, 12 (48), 129-140.
18.Aghvami, M., Keshavarz, A., Nazemi, M., Zarei, M. H., & Pourahmad, J. (2018). Selective cytotoxicity of α-santonin from the persian gulf sponge Dysidea avara on pediatric ALL B-lymphocytes via mitochondrial targeting. Asian Pacific Journal of Cancer Prevention, 19 (8), 2149.
19.Salimi, A., Saharkhiz, M. P., Motallebi, A., Seydi, E., Mohseni, A. R., Nazemi, M., & Pourahmad, J. (2015). Standardized extract of the Persian Gulf sponge, Axinella sinoxea selectively induces apoptosis through mitochondria in human chronic lymphocytic leukemia cells. Journal of Analytical Oncology, 4 (4), 132-140.
20.Kouchaksaraee, R. M., Li, F., Nazemi, M., Farimani, M. M., & Tasdemir, D. (2021). Molecular sponge Cliona celata. Marine Drugs, 19 (8), 439.
21.Nazemi, M., Ghaffari, H., Morady, Y., Mortazavi, M., & Aghaei, S. (2019). Extraction and identification of α-Santonin compound from sponge Dysidea avara and evaluation of its cytotoxic activity on carcinogenic cells, 12 (7), 122-135.
22.Heidary Jamebozorgi, F., Yousefzadi, M., Firuzi, O., Nazemi, M., Zare, S., Chandran, J. N., & Jassbi, A. R. (2021). Cytotoxic furanosesquiterpenoids and steroids from Ircinia mutans sponges. Pharmaceutical Biology, 59 (1), 573-581.
23.Jalalinezhad, S., Ayatollahi, S. A., & Taheri, A. (2021). Cytotoxic Properties of Marine Sponge Thetya sp. Extract and Apoptosis Stimulation against Colorectal Cancer Cells. Journal of Marine Medicine, 3 (2), 83-90.
24.Heidary Jamebozorgi, F., Yousefzadi, M., Firuzi, O., Nazemi, M., & Jassbi, A. (2018). Cytotoxic activity of hexane and dichloromethane parts of methanol extract of Ircinia mutans sponge on
three human cancer cell lines. Iranian Scientific Fisheries Journal, 27 (2), 105-114.
25.Harold, N. (1992). The crisis in antibiotic resistance. Science. 257, 1064-1073.
26.Andersson, D. L. (2003). Persistence of antibiotic resistant bacteria. Current Opinion Microbial, 6, 452-456.
27.Hooper, J. N. A., & Van Soest, R. W. M. (2002). Systema Porifera: A Guide to the Classification of Sponges, Vol. 1. Kluwer Academic/ Plenum Publishers, New York.
28.Cohen, M. L. (1992). Epidemiology of drug resistance: implications for a post-antimicrobial era. Science, 257, 1050-1055.
29.Selsted, M. E., & Ouellette, A. J. (2005). Mammalian defensins in the antimicrobial immune response. Nature immunology, 6 (6), 551.
30.Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, E., & Schmidt, E. W. (2000). Symbiotic bacteria in ponges: sources of bioactive substances. In: N. Fusetani, Editor, Drugs from the sea, 18, 107-119.
31.Harvey, A. (2001). The continuing value of natural products to drug discovery. GIT Labratiry, 5 (6), 284-285.
32.Gromadzki, S., Ramani, R., & Chaturvedi, V. (2003). Evaluation of new medium for identification of dermatophytes and primary dimorphic pathogens. Journal of clinical microbiology, 41 (1), 467-468.
33.Seradj, S. H., Hashemi, S. Z., Zomorodian, K., & Moein, M. R. (2020). Antimicrobial effects of some Persian gulf marine sponges. ISMJ, 23 (5), 494-504.
34.Nazemi, M., Tamadoni, J. S., Salari, Z., & Gozari, M. (2017). Comparison of antibacterial activity in methanol extract of sea cucumber (Holothuria leucospilota) and sponge Niphates furcata from Hengam Island, Persian Gulf.
35.Nazemi, M., Moradi, Y., Rezvani Gilkolai, F., Ahmaditaba, M. A., Gozari, M., & Salari, Z. (2017). Antimicrobial activities of semi polar-nonpolar and polar secondary metabolites of sponge Dysidea pallescens from Hengam Island, Persian Gulf, 12, 97-109.
36.Khakshoor, M. S., & Pazooki, J. (2014). Bactericidal and fungicidal activities of different crude extracts of Gelliodes carnosa (sponge, Persian Gulf). Iranian Journal of Fisheries Sciences, 13 (3), 776-784.
37.Shafeian, E., Ghavam Mostafavi, P., Moridi Farimani, M., Mashinchian Moradi, A., & Nazemi, M. (2022). Extraction and investigation of biological activities of dioctyl phthalate and dibutyl phthalate from marine sponge Haliclona (Soestella) caerulea Larak Island, Persian Gulf. Iranian Journal of Fisheries Sciences, 21 (5), 1141-1155.
38.Loori, M., Sourinejad, I., & Nazemi, M. (2021). Identification and investigation of antibacterial effects of steroidal fraction from the marine sponge Axinella sinoxea Alvarez & Hooper, 2009 in Larak island, the Persian Gulf. Fisheries Science and Technology, 10 (2), 164-172.
39.Mansurlakuraj, M., Rezaei Tavabe, K., Mirvaghefi, A., Nazemi, M., & Nematollahi, M. A. (2017). Evaluation and Comparison of Effects of N-hexane and Acetone Extracts Derived from Marine Geyser (Phaulasia nigra), Marine Sponge (Cliona spp.), Carpet Anemone (Sarcophyton spp.) and Starfish (Pentaceraster spp.) on E. coli Bacteria. Journal of Fisheries, 69 (4), 462-470.