اثر پلی فنول ترکیبی استخراج شده از ضایعات شاه بلوط و زیتون به عنوان افزودنی جیره روی عملکرد رشد و شاخصهای خونشناسی در ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) جوان

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، ایران.

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، ایران

3 گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 نویسنده مسئول، گروه علوم و فنون، دانشگاه سانیو، ایتالیا

چکیده

مواد زیست فعال کاربردی و همچنین سازگار با محیط زیست مانند عصاره‌های گیاهی فنولی به عنوان موادی با فعالیت ضد میکروبی، بهبود دهنده رشد و تکامل آبزیان پرورشی و یکی از مهم‌ترین جایگزین‌ها برای آنتی‌بیوتیک‌ها مطرح می‌باشند. از این‌رو هدف از تحقیق حاضر، تعیین اثرات ترکیبی عصاره پوست شاه بلوط و زیتون به عنوان افزودنی جیره روی رشد و شاخص‌های خونی ماهی قزل آلای رنگین‌کمان جوان بود. برای این منظور، تعداد 300 قطعه ماهی قزل‌آلای جوان با میانگین وزنی 1 ± 88 گرم در12 عدد مخزن گرد پلی‌اتیلنی توزیع گردیدند و به مدت 60 روز با جیره‌های آزمایشی شامل:0 (گروه شاهد)، 5/0 (P1)، 1 (P2) و 2 (P3) گرم ترکیب عصاره‌های فنولی به ازای هر کیلوگرم غذا تغذیه شدند. در پایان آزمایش، برای بررسی عملکرد رشد و زیست‌سنجی از ماهیان تمام گروه‌ها انجام شد. همچنین برای بررسی شاخص-های خون‌شناسی از ساقه دمی ماهیان به طور کاملا تصادفی خون‌گیری صورت گرفت. نتایج نشان داد که استفاده از ترکیب عصاره‌های فنولی پوست شاه بلوط و زیتون به‌طور معناداری سبب بهبود عملکرد رشد تیمارهای P2 و P3 در مقایسه با گروه شاهد شدند (05/0>P). با این وجود، ترکیب عصاره‌های مورد بررسی روی شاخص‌های خونی (گلبول قرمز، کلبول سفید، هماتوکریت و هموگلوبین) تیمارها اثر معناداری نداشت (05/0<P). به‌طورکلی می‌توان بیان کرد که با توجه به بهبود عملکرد رشد و عدم ایجاد اثرات مخرب روی شاخص‌های خون‌شانسی استفاده از عصاره ترکیبی ضایعات شاه بلوط و زیتون به عنوان افزودنی در جیره ماهی قزل‌آلای رنگین‌کمان پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of polyphenol compound extract from chestnut waste and olive as a feed additive on growth performance and hematological parameters in rainbow trout (Oncorhynchus mykiss)

نویسندگان [English]

  • Aghil Mansouri 1
  • Hamid Allaf Noveirian 2
  • seyyed Hossein Hosseinifar 3
  • Mirmasud Sajjadi 2
  • Ghasem Ashouri 4
1 Dept. of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
2 . Dept. of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
3 Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Corresponding Author, Dept. of Sciences and Technologies, University of Sannio, Via De Sanctis, snc, 82100 Benevento, Italy.
چکیده [English]

Bio-active substances that are practical and also compatible with the environment, such as phenolic plant extracts, are considered as substances with antimicrobial activity, growth improvement and maturation of farmed aquatics and one of the most important alternatives for antibiotics. So, the aim of this research was to determine the polyphenol extracted mixture from chestnut waste and olive as a feed additive on growth performance and hematological parameters of rainbow trout. For this aim, 300 pieces of juveniles with an average weight of 88 ± 1 grams were distributed in 12 round polyethylene tanks and fed with experimental diets including: 0 (control group), 0.5 (P1), 1 (P2) and 2 (P3) grams of phenolic extracts per kilogram of commercial diet for 60 days. At the end of the experiment, to evaluate the growth performance, biometry was randomely done. Also, blood was completely randomly collected from the caudal stem of the juveniles. The results showed that using polyphenol extracted mixture significantly improved the growth performance in P2 and P3 treatments compared to the control group (P<0.05). Nevertheless, the composition of the investigated extracts had no significant effect on the blood parameters and survival of the treatments (P<0.05). In general, it can be stated that due to the improvement of growth performance and not causing harmful effects on blood-luck indicators, using polyphenol extracted mixture from chestnut waste and olive as a feed additive in rainbow trut diet can be recommended.

کلیدواژه‌ها [English]

  • phenol
  • chestnut
  • olive
  • rainbow trout
1.Syahidah, A., Saad, C. R., Daud, H. M., & Abdelhadi, Y. M. (2015). Status and potential of herbal applications in aquaculture: A review.
2.Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, 433, 50-61.
3.Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92-104.
4.Citarasu, T. (2010). Herbal biomedicines: a new opportunity for aquaculture industry. Aquaculture International, 18 (3), 403-414.
5.Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8 (7), 1137-1144.
6.Food and Agriculture Organization of the United Nations. (2020). The state of world fisheries and aquaculture 2020: Sustainability in action. Food and Agriculture Organization of the United Nations.
7.Alishahi, M., Ranjbar, M. M., Ghorbanpour, M., Peyghan, R., Mesbah, M., & Razi, J. M. (2010). Effects of dietary Aloe vera on some specific and nonspecific immunity in the common carp (Cyprinus carpio). International Journal of Veterinary Research, 4 (3), 189-195.
8.Soltani, M., Rouholahi, S., Ebrahimzadeh Mousavi, H. A., Abdi, K., Zargar, A., & Mohamadian, S. (2014). Genetic diversity of Infectious Pancreatic Necrosis Virus (IPNV) in farmed rainbow trout (Oncorhynchus mykiss) in Iran. Bulletin of the European Association of Fish Pathologists, 34 (5), 156-164.
9.Dhar, A. K., Manna, S. K., & Thomas Allnutt, F. C. (2014). Viral vaccines for farmed finfish. Virusdisease, 25, 1-17.
10.Muktar, Y., Tesfaye, S., & Tesfaye, B. (2016). Present status and future prospects of fish vaccination: a review. J. Vet. Sci. Technol. 7 (02), 299.
11.Harikrishnan, R., Balasundaram, C., & Heo, M. S. (2011). Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317 (1-4), 1-15.
12.Shakya, A. K., & Shukla, S. (2017). Protective effect of Sharbat-e-Deenar against acetaminophen-induced hepatotoxicity in experimental animals. Journal of Traditional Chinese Medicine, 37 (3), 387-392.
13.Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International journal of herbal medicine, 4 (4), 59-64.
14.Pietta, P., Minoggio, M., & Bramati, L. (2003). Plant polyphenols: Structure, occurrence and bioactivity. Studies in natural products chemistry, 28, 257-312.
15.Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50 (3), 586-621.
16.Tückmantel, W., Kozikowski, A. P., & Romanczyk, L. J. (1999). Studies in polyphenol chemistry and bioactivity.
1. Preparation of building blocks from (+)-catechin. Procyanidin formation. Synthesis of the cancer cell growth inhibitor, 3-O-galloyl-(2 R, 3 R)-epicatechin-4β, 8-[3-O-galloyl-(2 R, 3 R)-epicatechin]. Journal of the American Chemical Society, 121 (51), 12073-12081.
17.Huang, M. T., Ho, C. T., & Lee, C. Y. (1992). Phenolic compounds in food and their effects on health II (Vol. 2, p. 507). Washington, DC: American Chemical Society.
18.Vázquez, G., González-Alvarez, J., Santos, J., Freire, M. S., & Antorrena, G. (2009). Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial crops and products, 29 (2-3), 364-370.
19.Hoseinifar, S. H., Jahazi, M. A., Nikdehghan, N., Van Doan, H., Volpe, M. G., & Paolucci, M. (2020). Effects of dietary polyphenols from agricultural by-products on mucosal and humoral immune and antioxidant responses of convict cichlid (Amatitlania nigrofasciata). Aquaculture, 517, 734790.
20.Jahazi, M. A., Hoseinifar, S. H., Jafari, V., Hajimoradloo, A., Van Doan, H., & Paolucci, M. (2020). Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. Aquaculture, 517, 734709.
21.Hoseinifar, S. H., Shakouri, M., Yousefi, S., Van Doan, H., Shafiei, S., Yousefi, M., ... & Faggio, C. (2020). Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. Fish & shellfish immunology, 100, 171-178.
22.Zakariaee, H., Sudagar, M., Hosseini, S. S., Paknejad, H., & Baruah, K. (2021). In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Frontiers in Microbiology, 12, 758758.
23.Ranjbar, M., Mohammad Nejad, M., & Ghomi, M. (2020). Effect of Different Salinity on Growth Factors, Survival and Hematology Indices of Rainbow Trout (Oncorhynchus mykiss). Animal Physiology and Development Quarterly, 14 (1), 87-98.
24.Ashouri, G., Soofiani, N. M., Hoseinifar, S. H., Jalali, S. A. H., Morshedi, V., Van Doan, H., & Mozanzadeh, M. T. (2018). Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish & shellfish immunology, 79, 34-41.
25.Witeska, M., Kondera, E., Ługowska, K., & Bojarski, B. (2022). Hematological methods in fish–Not only for beginners. Aquaculture, 547, 737498.
26.Gao, Z., Wang, W., Abbas, K., Zhou, X., Yang, Y., Diana, J. S., ... & Sun, Y. (2007). Haematological characterization of loach Misgurnus anguillicaudatus: comparison among diploid, triploid and tetraploid specimens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147 (4), 1001-1008.
27.Anderson, D., & Klontz, G. W. (1965, December). Basic haematology for the fish culturist. In Northwest Fish Culture Conference (Vol. 16, pp. 38-41).
28.Ellis, A. E. (1999). Immunity to bacteria in fish. Fish & shellfish immunology, 9 (4), 291-308.
29.Larsen, H. N., & Snieszko, S. F. (1961). Comparison of various methods of determination of hemoglobin in trout blood. The Progressive Fish-Culturist, 23 (1), 8-17.
30.Duncan, D. B. (1955). Multiple range and multiple F tests. biometrics, 11 (1), 1-42.
31.Ajikumar, P. K., Tyo, K., Carlsen, S., Mucha, O., Phon, T. H., & Stephanopoulos, G. (2008). Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular pharmaceutics, 5 (2), 167-190.
32.Akdemir, F., Orhan, C., Tuzcu, M., Sahin, N., Juturu, V., & Sahin, K. (2017). The efficacy of dietary curcumin on growth performance, lipid peroxidation and hepatic transcription factors in rainbow trout Oncorhynchus mykiss (Walbaum) reared under different stocking densities. Aquaculture Research, 48 (8), 4012-4021.
33.Avazeh, A., Adel, M., Shekarabi, S. P. H., Emamadi, H., Dawood, M. A., Omidi, A. H., & Bavarsad, M. (2021). Effects of dietary pomegranate peel meal on the growth performance, blood indices, and innate immune response of rainbow trout. Annals of Animal Science, 21 (1), 233-244.
34.Mousavi, S., Sheikhzadeh, N., Tayefi-Nasrabadi, H., Alizadeh-Salteh, S., Khani Oushani, A., Firouzamandi, M., & Mardani, K. (2020). Administration of grape (Vitis vinifera) seed extract to rainbow trout (Oncorhynchus mykiss) modulates growth performance, some biochemical parameters, and antioxidant- relevant gene expression. Fish physiology and biochemistry, 46, 777-786.
35.Peña, E., Badillo‐Zapata, D., Viana, M. T., & Correa‐Reyes, G. (2020). Use of grape pomace in formulated feed for the rainbow trout fry, Oncorhynchus mykiss (Walbaum, 1792). Journal of the World Aquaculture Society, 51 (2), 542-550.
36.Yonar, M. E., Yonar, S. M., İspir, Ü., & Ural, M. Ş. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish & shellfish immunology, 89, 83-90.
37.Safari, R., Hoseinifar, S. H., Imanpour, M. R., Mazandarani, M., Sanchouli, H., & Paolucci, M. (2020). Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture, 528, 735494.
38.Ahmadifar, E., Falahatkar, B., & Akrami, R. (2011). Effects of dietary thymol‐carvacrol on growth performance, hematological parameters and tissue composition of juvenile rainbow trout, Oncorhynchus mykiss. Journal of Applied Ichthyology, 27 (4), 1057-1060.
39.Ahmadi, A., Bagheri, D., Hoseinifar, S. H., Morshedi, V., & Paolucci, M. (2022). Beneficial role of polyphenols as feed additives on growth performances, immune response and antioxidant status of Lates Calcarifer (Bloch, 1790) juveniles. Aquaculture, 552, 737955.
40.Kohshahi, A. J., Sourinejad, I., Sarkheil, M., & Johari, S. A. (2019). Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish physiology and biochemistry, 45, 793-804.
41.Torno, C., Staats, S., de Pascual-Teresa, S., Rimbach, G., & Schulz, C. (2019). Effects of resveratrol and genistein on growth, nutrient utilization and fatty acid composition of rainbow trout. animal, 13 (5), 933-940.
42.Naderi Farsani, M., Meshkini, S., & Manaffar, R. (2021). Growth performance, immune response, antioxidant capacity and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss) as influenced through singular or combined consumption of resveratrol and two‐strain probiotics. Aquaculture Nutrition, 27 (6), 2587-2599.
43.Akrami, R., Hajimoradloo, A., Matinfar, A., Abedian Kenari, A., & Alimohammadi, A. (2009). The effects of dietary inulin on growth performance, nutrition, survival and body composition of juvenile beluga (Huso huso). Journal of World Aquaculture Society, 40 (6), 771-779.
44.Shafiqi, T., & Bahrkazmi, M. (2017). The effect of different levels of dietary inulin prebiotic on growth indicators, survival and carcass composition of Amur fry (Ctenopharyngodon idella). Scientific-Research Journal of Experimental Animal Biology, 7 (2), 23-32.
46.Aghamohammadpour, P., Mabudi, H., & Javanzadeh, N. )2019(. The Effects of Salinity Stress on Growth Rate, Hematological Parameters and Survivability in Shirbot Fingerlings (Arabibarbus grypus). Animal physiology and development, 12 (2), 13-27.
48.Hamedi, S., Rahimi, R., Nafisi Bahabadi, M., Azodi, M., & Ahmadi, S.A. 2019. Study of Some Liver Enzymes Changes (Lates calcarifer) at Different Levels of Water Salinity.
49.Ighwela, K. A., Ahmad, A. B., & Abol-Munafi, A. B. (2012). Haematological changes in Nile tilapia (Oreochromis niloticus) fed with varying dietary maltose levels. World J Fish Marine Sci. 4 (4), 376-381.