بررسی تاثیر تراکم پرورش بر فراسنجه‌های خونی و پروفایل اسید چرب بچه ماهی سفید خزری

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 کارشناسی‌ارشد بوم‌شناسی آبزیان، گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 نویسنده مسئول، دانشیار گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 مربی گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

4 دکتری تکثیر و پرورش آبزیان، گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

بررسی فراسنجه‌های خونی و ترکیبات اسیدهای چرب به علت دارا بودن اهمیت ساختاری و فیزیولوژیکی در ماهیان پرورشی مختلفی مورد مطالعه قرار گرفته است. هدف از این مطالعه بررسی فراسنجه‌های خونی و تعیین پروفایل اسیدچرب ماهی سفید دریای خزر (R. frisii) در تراکم‌های مختلف پرورش است. این آزمایش روی تعداد 300 قطعه بچه ماهی سفید به وزن 2 گرم در 5 تیمار تراکم (5، 10، 15، 20 و 25 قطعه در حجم 60 لیتر آب) با سه تکرار با نرخ غذادهی 8 درصد وزن بدن به مدت 56 روز انجام پذیرفت. نتایج بدست آمده از این تحقیق اختلاف معنی‌داری را در مقادیر گلبول قرمز و هموگلوبین بین تراکم‌های مختلف نشان نداد (05/0P > ) اما از نظر مقادیر گلبول سفید و هماتوکریت بین تیمارهای مختلف اختلاف معنی‌داری وجود داشت (05/0P < ). بالاترین سطوح هورمون کورتیزول و گلوکز در دو تراکم بالا (20 و 25) بدست آمد و با سه تیمار اول اختلافات معنی‌داری داشت (05/0P < ). در تراکم های 5 و 15 ماهی، میزان اسید پالمیتیک (C16:0) و در تراکم های 10، 20 و 25 ماهی میزان اسید استئاریک (C18:0) بالاترین مقادیر را در بین اسیدهای چرب اشباع نشان دادند (05/0P<) و گامالینولئیک اسید (C18:3n6) فراوانترین اسید چرب چند غیر اشباع در همه تیمارها بود (05/0P <).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of rearing density on blood parameters and fatty acid profile of Caspian Rutilus kutum fry

نویسندگان [English]

  • Kousar Ghafouri Kiasari 1
  • Mohammad Kazem Khalesi 2
  • Sohrab Kohestan Eskandari 3
  • Seyedeh Zeinab Abedi 4
1 M.Sc. in Aquatic Ecology, Dept. of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Corresponding Author, Associate Prof., Dept. of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Instructor, Dept. of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 . Ph.D. in Aquaculture, Dept. of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

إlood parameters and fatty acid profile have been studied in various cultured fish due to their structural and physiological importance. This study aims to investigate blood parameters and the fatty acid profile of Caspian Rutilus frisii larvae in different rearing densities. This experiment was carried out on 300 pieces of fish (2 g) in five density treatments (5, 10, 15, 20, and 25 pieces in a 60 L of water) with three replications at a feeding rate of 8% of body weight for 56 days. The results obtain did not show significant differences in the amounts of red blood cells and hemoglobin between different densities (P>0.05), but there was a significant difference in the values of white blood cells and hematocrit between different treatments (P<0.05). The highest levels of cortisol and glucose hormones were obtained in two high densities (20 and 25), which were significantly different from the first three treatments (P<0.05). At densities of 5 and 15 fish, the amount of palmitic acid (C16:0) and the amount of stearic acid (C18:0) among saturated fatty acids showed the highest values at densities of 10, 20, and 25 fish (P<0.05). Gammalinoleic acid (C18:3n6) was the most abundant polyunsaturated fatty acid in all treatments (P<0.05).

کلیدواژه‌ها [English]

  • Keywords: density
  • blood parameters
  • fatty acid
  • Rutilus frisii
1.Ellis, T., North, B., Scott, A. P., Bromage, N. R., Porter, M., & Gadd, D. (2002). The relationships between stocking density and welfare in farmed rainbow trout. Journal of Fish Biology, 61, 493-531.
2.Rafatnezhad, S., Falahatkar, B., & Gilani, M. H. T. (2008). Effects of stocking density on haematological parameters, growth, and fin erosion of great sturgeon (Huso huso) juveniles. Aquaculture Research, 39, 1506-1513.
3.Iguchi, K., Ogawa, K., Nagae, M., & Ito, F. (2003). The influence of rearing density on stress response and disease susceptibility of ayu (Plecoglossus altivelis). Aquaculture, 220, 515-523.
4.Yousif, O. M. (2002). The effects of stocking density, water exchange rate, feeding frequency and grading on size hierarchy development in juvenile Nile tilapia, (Oreochromis niloticus). Journal of Agriculture Science, 14, 45-53.
5.Ramsay, J. M., Feist, G. W., Varga, Z. M., Westerfield, M., Kent, M. L., & Schreck, C. B. (2006). Whole-body cortisol is an indicator of crowding stress in adult zebrafish, (Danio rerio). Aquaculture, 258, 565-574.
6.Mommsen, T. P., Vijayan, M. M., & Moon, T. W. (1999). Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology, 9, 211-268.
7.Bayunova, L., Barannikova, I., & Semenkova, T. (2002). Sturgeon stress reaction in aquaculture. Applied Ichthyology, 18, 397-404.
8.Barcellos, L. J. G., Kreutz, L. C., & Quevedo, R. M. (2006). Previous chronic stress does not alter the cortisol response to an additional acute stressor in jundia´ (Rhamdia quelen) fingerlings. Aquaculture, 253, 317-321.
9.Li, D., Liu, Z., & Xie, C. (2012). Effect of Stocking Density on Growth and Serum Concentrations of Thyroid Hormones and Cortisol in Amur sturgeon, Acipenser schrenckii. Fish Physiology and Biochemistry, 382, 511-520.
10.Santos, G. A., Schrama, J. W., Mamuag, R. E. P., Rombout, J. H. W. M., & Verreth, J. A. J. (2010). Chronic stress impairs performance. Energy metabolism and welfare indicators in European sea bass (Dicentrarchus labrax): The combined effects of fish crowding and water quality deterioration. Aquaculture, 299, 73-80.
11.Costas, B., Aragao, C., Dias, J., Afonso, A., & Conceicao, L. E. C. (2013). Interactive effects of a high-quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiol. Biochem. 39, 1141-1151.
12.Jamili, Sh., & Mashianchian Moradi, A. (2017). Investigating and identifying the blood factors of duck fish in Anzali lagoon. The first national conference on fisheries and aquatic sciences of Iran, Lahijan, pp. 37-39.
13.Sattari, M. (2002). Ichthyology (Description and Physiology). Gilan: Naqsh Mehr Publications. Chapter 6, 214-224. [In Persian]
14.Houston, A. H., & Rupert, R. (1997). mmediate response of hemoglobin system of gold fish (Cyprinus auratus) to tempera change. Canadian Journal of Zoology, 54, 1731-1741.
15.Tirneitali, M., Khalesi, M. K., & Kohestan Eskandari, S. (2015). Comparison of chemical composition, fatty acids, and muscle of the Caspian Sea Kutum (Rutilus frisii) in the east and west of Mazandaran province in winter and spring. Journal of Food Science and Nutrition, 17 (67), 67-80.
16.Sargent, J. R., Bell, M. V., Henderson, R. J., & Tocher, D. R. (1990). Polyunsaturated fatty acids in marine and terrestrial food webs. In Animal nutrition and transport processes. 1. Nutrition in wild and domestic animals. Edited by J. Mellinger (ed.). Comparative Physiology, Basel, Karger 5, 11-23.
17.Mahmoudi, Z., Allaf Naveirian, H., Falahatkar, B., & Hhoshkholq, M. (2013). Effect of different levels of dietary protein and fat on the growth performance of Caspian Sea Kutum, Rutilus frisii kutum Kamensky. Iranian Journal of Fisheries Science, 22 (1), 101-116.
18.Iwama, G. K., Afonso, L. O. B., & Vijayan, M. M. (2004). Stress in Fish. Aqua Net Workshop on Fish Welfare, Campbell River, B.C. Canada. pp. 9.
19.Pickering, A. D., & Pottinger, T. G. (1989). Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiology and Biochemistry, 7, 253-258.
20.Jalili, S. (2017). Effect of cooling time on protein changes and damage to fatty acids of Caspian Sea Kutum (Rutilus frisi kutum) during cold storage. Doctoral thesis on fisheries. Islamic Azad University Research Sciences Unit. 160 p.
21.Valente, L. M. P., Olmedo, M., Borges, P., Soares, S., Gomes, E. F. S., Álvarez‐Blázquez, B., & Linares, F. (2010). Effects of carbohydrate sources on growth, body composition and tissue lipid deposition of black spot sea bream, Pagellus bogaraveo (Brunnich). Journal of Animal Physiology and Animal Nutrition, 94 (2), 212-219.
22.Hedayati Fard, M., & Nemati, S. (2008). Fatty acid changes in the eggs of Kutum (Rutilus frissi kutum) and golden mullet (Liza aurata) from the Caspian Sea under the salting process. Journal of Fishery, 3 (2), 1-11.
23.Mnari, A., & Bouhle, I. (2007). Fatty acids in the muscle and liver of Tunisian wild and farmed gilthead sea bream (Sparus aurata). Journal of Food Chemistry, 100, 1393-1397.
24.Ozogul, Y., & Ozgoul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black seas. Food Chemistry, 100, 1636-1638.
25.Zuraini A., Somchit, M. N., Solihah, Goh, M. H., Y. M., Arifah, A. K., Zakaria, M. S., Somchit, N., Rajion,
M. A., Zakaria Z. A., & Mat Jais, A. M. (2006). Fatty acid and amino acid composition of three local Malaysian Channa spp. fish, Food Chemistry, 97 (4), 674-678.
26.Ni, M., Wen, H., Li, J., Chi, M., Bu, Y., Ren, Y., Zhang, M., Song, Zh., & Ding, H. (2016). Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii). Aquaculture Research, 47, 1596-1604.
27.Memon, N. N., Talpur, F. N., Bhanger, M. I., & Balouch A. (2011). Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry, 126 (2), 405-410.
28.Nikoo, M., Faghani Langroudi, H., & Esmaili Molla, A. (2010). Serum steroid hormones in Kutum (Rutilus frisii kutum) during spawning season. International Aquatic Research, 2, 131-133.
29.Garcı́a-Arias, M. T., Álvarez Pontes, E., Garcı́a-Linares, M. C., Garcı́a-Fernández, M. C., & Sánchez-Muniz, F. J. (2003). Cooking–freezing–reheating (CFR) of sardine (Sardina pilchardus) fillets. Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chemistry, 83 (3), 349-356.
30.Justi, K. C., Hayashi, C., Visentainer, V. N., DeSouza, E., & Matsushita, M. (2003). The influence of supply time on the fatty acid profiles of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chemistry, 80, 489-493.
31.Barton, B. A. (2002). Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integrative and Comparative Biology, 42 (3), 517-525.
32.Ortun ̃o, J., Esteban, A., & Meseguer, J. (2002). Lack of effect of combining different stressors on innate responses of sea bream (Sparus aurata L.). Veterinary Immunology and Immunopathology, 84, 17-27. 
33.Beyea, M., Benfey, T., & Kieffer, J., (2005). Hematology and stress physiology of juvenile diploid and triploid shortnose sturgeon (Acipenser brevirostrum). Fish Physiology and Biochemistry, 31, 303-313. 
34.Ruane, N. M., Carballo, E. C., & Komen, J. (2002). Increasing stocking density influences the cute
physiological stress response of Common carp Cyprinus carpio (L). Aquaculture Research, 33, 777-784.
35.Yarahmadi, P., Kolangi Miandare, H., Fayaz, S., Marlowe, C., & Caipang, A. (2016). Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 48, 43-53.
36.Khandan Barani, H., & Heydari, M. R. (2018). The Effects of Stocking Density on Blood and Serum Biochemical Indices of Goldfish Carassius auratus. Journal of Experimental Animal Biology, 24, 75-84.
37.Hassanalipour, A., Igdari, S., Bahmani, M., & Pourbaqer, H. (2013). Changes in cortisol-glucose index and growth in response to stocking density in the Siberian sturgeon Acipenser baerii. Journal of Utilization and Cultivation of Aquatics, 1 (4), 13-27.
38.Procarione, L. S., Barry, T. P., & Malison, J. A. (1999). Effect of high rearing density and loading rates on the growth and stress response of juvenile rainbow trout. North American Journal of Aquaculture, 61, 91-96.
39.Milhgan, C. L., & Wood, C. M. (1982). Disturbances in haematology, fluid volume distribution and circulatory function associated with low environmental pH in the rainbow trout, Salmo gairdneri. Journal of Experimental Biology, 99, 397-415.
40.Ziegeweid, J. R., & Black, M. C. (2010). Hematocrit and plasma osmolality values of young-of-year short-nose sturgeon following acute exposures to combinations of salinity and temperature. Fish Physiology and Biochemistry, 36, 963-968.
41.Skov, P. V., Larsen, B. K., Frisk, M., & Jokumsen, A. (2011). Effects of rearing density and water current on the respiratory physiology and haematology in rainbow trout, Oncorhynchus mykiss at high temperature. Aquaculture,319, 446-452.
42.Serajian, Sh. (2015). Examination and comparison of some blood factors and steroid hormones in immature and mature female golden mullet Caspian Sea (Liza auratus). M.Sc Thesis, Islamic Azad University, Lahijan Branch. 113 p.
43.Pickering, A. D., & Pottinger, T. G. (1987). Crowding causes prolonged leucopenia in salmonid fish despite interrenal acclimation. Journal of Fish Biology, 30, 701-702.
44.Wedemeyer, G. A., Barton, B., & Mcleay, D. J. (1990). Stress and acclimation. Methods for fish biology. American Fisheries Society, Bethesda, Maryland, 451-489.
45.Aalimahmoudi, M., Salehipour Bavarsad, S., & Saeid Moghdani, S. (2015). Effects of different stocking densities on haematological and biochemical parameters of great sturgeon juveniles (Huso huso Linnaeus, 1758). Research Opinions in Animal and Veterinary Sciences, 5 (8), 348-352.
46.Ellsaesser, C. F., Miller, N. W., & Cuchens, M. A. (1985). Analysis of channel catfish peripheral blood leukocytes by bright-field microscopy and flow cytometry: Transactions of the American Fisheries Society, 114, 279-285.
47.Balabanova, L. V., Mikryakov, D. V., & Mikryakov, V. R. (2009). Response of common carp (Cyprinus carpio L.) leucocytes to hormone-induced stress. Inland Water Biology, 2, 86-88.
48.Martines-Porchas, M., Martines-Cordova, L. R., & Ramos-Enriquez, R. (2009). Cortisol and glucose: reliable indicators of fish stress? Pan American Journal of Aquatic Sciences, 4 (2), 158-178.
49.Bahmani, M., Kazemi R., & Donskaya P. (2001). A comparative study of some hematological features in young reared sturgeon. Fish Physiology and Biochemistry, 24, 135-140.
50.McDonald, D. G., & Milligan, C. L. (1992). Chemical properties of the blood. In: Hoar, W. S., Randall, D. J., Farrell, A. P. (Eds.), Fish Physiology. Elsevier Inc., the Netherlands, pp. 55–133.
51.Gomułka, P., Własow, T., Velíšek, J., Svobodová, Z., & Chmielińska, E. (2008). Effects of eugenol and MS 222 anesthesia on Siberian sturgeon Acipenser baerii Brandt. Acta Vet Brno, 77 (3), 447-453.
52.Hosseini, F. (2018). Changes in fatty acids during the early developmental stages of Kutum (Rutilus frisii kutum) in the Caspian Sea. Master's thesis, Sari University of Agriculture and Natural Resources, 79 p.