اثر عصاره آنزیمی مستخرج از ضمائم پیلوریک ماهی بر عملکرد رشد و ترکیب بیوشیمیایی بچه ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss)

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، دانشجوی دکتری تخصصی گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 استاد گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، همدان، ایران.

4 استادیار گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه رازی، کرمانشاه، ایران.

چکیده

در صنعت پرورش ماهی، استفاده از مکمل‌های غذایی، از جمله آنزیم‌ها، به‌عنوان یک راهبرد حیاتی برای بهبود عملکرد تغذیه‌ای و رشد مطرح است. این تحقیق به منظور ارزیابی تأثیر عصاره آنزیمی مستخرج از ضمائم پیلوریک بر عملکرد رشد و ترکیب شیمیایی بدن بچه ماهی قزل‌آلای رنگین کمان انجام شد. چهار جیره غذایی شامل جیره شاهد (A: بدون آنزیم) و سه جیره حاوی مقادیر مختلف عصاره آنزیمی (B: 5/0، C: 1و D: 2 گرم در کیلوگرم غذا) همسان از نظر پروتئین و انرژی تهیه شد. نتایج نشان دادن جیره‌های D وC، به ترتیب بهترین عملکرد رشد را نسبت به سایر جیره‌های آزمایشی نشان دادند. به طوری که شاخص‌های افزایش وزن بدن و نرخ رشد روزانه در این جیره‌ها بطور معناداری از سایر جیره‌ها بیشتر بود. این جیره‌ها با کمترین ضریب تبدیل غذایی، به طور معناداری بهترین عملکرد را در مصرف غذا نیز به نمایش گذاشتند. همچنین، نرخ رشد ویژه و شاخص وضعیت در جیره D و نرخ بقاء در جیره C بیشترین مقدار را نشان داد اگرچه این تفاوت‌ها معنادار نبودند. درصد خاکستر در جیره D نیز نسبت به سایر جیره‌ها به طور معناداری بیشتر بود. به ترتیب جیره‌های D وC، به طور معنی‌داری باعث افزایش نسبت کارایی پروتئین و نسبت کارایی چربی شدند. نتایج این تحقیق نشان می‌دهد که استفاده از 2 گرم در کیلوگرم عصاره آنزیمی مستخرج از ضمائم پیلوریک می‌تواند به بهبود عملکرد رشد و تغذیه‌ای بچه ماهی قزل‌آلای رنگین کمان کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of enzyme extract derived from fish pyloric appendages on growth performance and biochemical composition of rainbow trout fry (Oncorhynchus mykiss)

نویسندگان [English]

  • Pouria Heshmatzad 1
  • َAbdolmajid Hajimoradloo 2
  • Abbas Zamani 3
  • Hadi Cheraghi 4
1 Corresponding Author, Ph.D. Student, Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Professor, Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Prof., Dept. of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Hamedan, Iran.
4 Assistant Prof., Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
چکیده [English]

In fish farming industry, the use of nutritional supplements, including enzymes, is recognized as a vital strategy to enhance nutritional performance and growth. This study aimed to evaluate the effect of enzymatic extract from pyloric appendages on the growth performance and body composition of rainbow trout fry. Four dietary treatments were prepared, including a control diet (A: without enzyme) and three diets containing different levels of enzyme extract (B: 0.5 g/kg, C: 1 g/kg, and D: 2 g/kg of feed) with uniform protein and energy content. The results indicated that diets D and C exhibited the best growth performance compared to other experimental diets. These diets significantly outperformed others in terms of body weight increase and daily growth rate. Moreover, they showed the best feed conversion ratio, indicating efficient feed utilization. Additionally, diet D showed the highest specific growth rate and condition factor, while diet C exhibited the highest survival rate, although these differences were not statistically significant. The ash content in diet D was also significantly higher compared to other diets. Diets D and C significantly increased protein efficiency ratio and lipid efficiency ratio. The findings suggest that the inclusion of 2 g/kg enzymatic extract from pyloric appendages can improve the growth and nutritional performance of rainbow trout fry.

کلیدواژه‌ها [English]

  • enzyme extract
  • rainbow trout
  • fish waste
  • growth performance
1.Valoppi, F., Agustin, M., Abik, F., Morais de Carvalho, D., Sithole, J., Bhattarai, M., & Mikkonen, K. S. (2021). Insight on current advances in food science and technology for feeding the world population. Frontiers in Sustainable Food Systems, 5, 626227.
2.Giap, D. H., & Lam, T. J. (2015). Meeting the needs for more fish through aquaculture. COSMOS, 11(01), 55-68.
3.Liao, I. C., & Chao, N. H. (2009). Aquaculture and food crisis: opportunities and constraints. Asia Pacific Journal of Clinical Nutrition, 18(4), 564-569.
4.Sampels, S. (2014). Towards a More Sustainable Production of Fish as an Important Protein Source for Human Nutrition. J. Fisheries Livest. Prod. 2, 119. doi: 10.4172/2332-2608.1000119.
5.Hastein, T., Hjeltnes, B., Lillehaug, A., Utne Skare, J., Berntssen, M., & Lundebye, A. K. (2006). Food safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. Rev. Sci. Tech. 25 (2), 607-625.
6.Bureau, D. P., & Hua, K. (2010). Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquaculture Research, 41 (5), 777-792.
7.Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., & Dave, D. (2013). Fish processing wastes as a potential source of proteins. Amino acids and oils: A critical review. Journal of Microbial and Biochemical Technology, 5 (4), 107-129.
8.Liang, Q., Yuan, M., Xu, L., Lio, E., Zhang, F., Mou, H., & Secundo, F. (2022). Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology, 4 (2), 208-221.
9.Novelli, P. K., Barros, M. M., Pezzato, L. E., de Araujo, E. P., de Mattos Botelho, R., & Fleuri, L. F. (2017). Enzymes produced by agro-industrial co-products enhance digestible values for Nile tilapia (Oreochromis niloticus): A significant animal feeding alternative. Aquaculture, 481, 1-7.
10.Simpson, B. K. (2000). Digestive proteinases from marine animals. Food Science and Technology- New York - Marcel Dekker, 191-214.
11.Bougatef, A. (2013). Trypsins from fish processing waste: characteristics and biotechnological applications-comprehensive review. Journal of Cleaner Production, 57, 257-265.
12.Jesús-de la Cruz, K., Álvarez-González, C. A., Peña, E., Morales-Contreras, J. A., & Ávila-Fernández, Á. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech, 8 (4), 186.
13.Khantaphant, S., & Benjakul, S. (2010). Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chemistry, 120 (3), 658-664.
14.Solar, I. I. (2009). Use and exchange of salmonid genetic resources relevant for food and aquaculture. Reviews in Aquaculture, 1 (3‐4), 174-196.
15.Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., & Amjad, F. (2021). Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catalysis Letters, 151, 307-323.
16.Veloorvalappil, N. J., Robinson, B. S., Selvanesan, P., Sasidharan, S., Kizhakkepawothail, N. U., Sreedharan, S., ... & Sailas, B. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 1(03), 39-51.
17.Gimenes, N. C., Silveira, E., & Tambourgi, E. B. (2021). An overview of proteases: production, downstream processes and industrial applications. Separation & Purification Reviews, 50 (3), 223-243.
18.Kolodziejska, I., & Sikorski, Z. E. (1996). Neutral and alkaline muscle proteases of marine fish and invertebrates a review. Journal of Food Biochemistry, 20 (3), 349-364.
19.Chong, A. S., Hashim, R., Chow-Yang, L., & Ali, A. B. (2002). Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203 (3-4), 321-333.
20.Lerch, M. M., Halangk, W., & Krüger, B. (2002). The role of cysteine proteases in intracellular pancreatic serine protease activation. Cellular Peptidases in Immune Functions and Diseases 2, 403-410.
21.Adeli, A., & Baghaei, F. (2013). Production and supply of rainbow trout in Iran and the world. https://api.semanticscholar.org/CorpusID:73682681.
22.Food and Agriculture Organization (FAO). (2024). Aquaculture Growth Potential in Iran (Islamic Republic). United Nations.
23.Alvarez-González, C. A., Cervantes-Trujano, M., Tovar-Ramírez, D., Conklin, D. E., Nolasco, H., Gisbert, E., & Piedrahita, R. (2005). Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry, 31, 83-93.
24.Kolkovski, S. (2001). Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture, 200 (1-2), 181-201.
25.Fallah, A. A., Siavash Saei‐Dehkordi, S., & Nematollahi, A. (2011). Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 46 (4), 767-773.
26.Namjou, F., Yeganeh, S., Madani, R., & Ouraji, H. (2023). Effect of dietary trypsin extracted from the viscera of yellowfin sea bream, (Acanthopagrus latus) on growth performance, body composition, and digestive trypsin activity in Sobaity sea bream (Sparidentex hasta) larvae. Iranian Journal of Fisheries Sciences, 22 (3), 658-677.
27.Ai, Q., Mai, K., Zhang, W., Xu, W., Tan, B., Zhang, C., & Li, H. (2007). Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147 (2), 502-508.
28.Watanabe, T. A. K. E. S. H. I. (2002). Strategies for further development of aquatic feeds. Fisheries Science, 68 (2), 242-252.
29.Ganguly, S., Dora, K. C., Sarkar, S., & Chowdhury, S. (2013). Supplementation of prebiotics in fish feed: a review. Reviews in Fish Biology and Fisheries, 23, 195-199.
30.Yigit, N. O., Bahadir Koca, S., Didinen, B. I., & Diler, I. (2018). Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss, Walbaum) fed soybean meal-based diets. Journal of Applied Animal Research, 46 (1), 29-32.
31.Haghbayan, S., & Shamsaie Mehrgan, M. (2015). The effect of replacing fish meal in the diet with enzyme-treated soybean meal (HP310) on growth and body composition of rainbow trout fry. Molecules, 20 (12), 21058-21066.
32.Oliva-Teles, A., Gouveia, A. J., Gomes, E., & Rema, P. (1994). The effect of different processing treatments on soybean meal utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture, 124 (1-4), 343-349.
33.Assan, D., Kuebutornye, F. K. A., Hlordzi, V., Chen, H., Mraz, J., Mustapha, U. F., & Abarike, E. D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653.
34.Drew, M. D., Racz, V. J., Gauthier, R., & Thiessen, D. L. (2005). Effect of adding protease to coextruded flax: pea or canola: pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 119 (1-2), 117-128.
35.Kemi Gabo, C., Masembe, C., Jere, L. W., & Sikawa, D. (2017). Effects of protease enzyme supplementation on protein digestibility of legume and/or fish meal-based fish feeds. International Journal of Fisheries and Aquaculture,
9 (7), 73-80.
36.Saleh, E. S., Tawfeek, S. S., Abdel‐Fadeel, A. A., Abdel‐Daim, A. S., Abdel‐Razik, A. R. H., & Youssef, I. M. (2022). Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus). Journal of Animal Physiology and Animal Nutrition, 106 (2), 419-428.
37.Lin, S., Mai, K., & Tan, B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus × O. aureusAquaculture research, 38 (15), 1645-1653.
38.Dabrowski, K., & Glogowski, J. (1977). A study of the application of proteolytic enzymes to fish food. Aquaculture,
12 (4), 349-360.
39.Schneider, T. L. S., & Lazzari, R. (2022). Nutritional implications of exogenous proteases in fish feeding. Pesquisa Agropecuária Gaúcha, 28 (1), 70-93.
40.De Vecchi, S., & Coppes, Z. (1996). Marine fish digestive proteases-relevance to food industry and the south‐west Atlantic region-a review. Journal of Food Biochemistry, 20 (1), 193-214.
41.Dalsgaard, J., Bach Knudsen, K. E., Verlhac, V., Ekmann, K. S., & Pedersen, P. B. (2016). Supplementing enzymes to extruded, soybean‐based diet improves breakdown of non‐starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 22 (2), 419-426.