1.Valoppi, F., Agustin, M., Abik, F., Morais de Carvalho, D., Sithole, J., Bhattarai, M., & Mikkonen, K. S. (2021). Insight on current advances in food science and technology for feeding the world population. Frontiers in Sustainable Food Systems, 5, 626227.
2.Giap, D. H., & Lam, T. J. (2015). Meeting the needs for more fish through aquaculture. COSMOS, 11(01), 55-68.
3.Liao, I. C., & Chao, N. H. (2009). Aquaculture and food crisis: opportunities and constraints. Asia Pacific Journal of Clinical Nutrition, 18(4), 564-569.
4.Sampels, S. (2014). Towards a More Sustainable Production of Fish as an Important Protein Source for Human Nutrition. J. Fisheries Livest. Prod. 2, 119. doi: 10.4172/2332-2608.1000119.
5.Hastein, T., Hjeltnes, B., Lillehaug, A., Utne Skare, J., Berntssen, M., & Lundebye, A. K. (2006). Food safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. Rev. Sci. Tech. 25 (2), 607-625.
6.Bureau, D. P., & Hua, K. (2010). Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquaculture Research, 41 (5), 777-792.
7.Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., & Dave, D. (2013). Fish processing wastes as a potential source of proteins. Amino acids and oils: A critical review. Journal of Microbial and Biochemical Technology, 5 (4), 107-129.
8.Liang, Q., Yuan, M., Xu, L., Lio, E., Zhang, F., Mou, H., & Secundo, F. (2022). Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology, 4 (2), 208-221.
9.Novelli, P. K., Barros, M. M., Pezzato, L. E., de Araujo, E. P., de Mattos Botelho, R., & Fleuri, L. F. (2017). Enzymes produced by agro-industrial co-products enhance digestible values for Nile tilapia (Oreochromis niloticus): A significant animal feeding alternative. Aquaculture, 481, 1-7.
10.Simpson, B. K. (2000). Digestive proteinases from marine animals. Food Science and Technology- New York - Marcel Dekker, 191-214.
11.Bougatef, A. (2013). Trypsins from fish processing waste: characteristics and biotechnological applications-comprehensive review. Journal of Cleaner Production, 57, 257-265.
12.Jesús-de la Cruz, K., Álvarez-González, C. A., Peña, E., Morales-Contreras, J. A., & Ávila-Fernández, Á. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech, 8 (4), 186.
13.Khantaphant, S., & Benjakul, S. (2010). Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chemistry, 120 (3), 658-664.
14.Solar, I. I. (2009). Use and exchange of salmonid genetic resources relevant for food and aquaculture. Reviews in Aquaculture, 1 (3‐4), 174-196.
15.Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., & Amjad, F. (2021). Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catalysis Letters, 151, 307-323.
16.Veloorvalappil, N. J., Robinson, B. S., Selvanesan, P., Sasidharan, S., Kizhakkepawothail, N. U., Sreedharan, S., ... & Sailas, B. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 1(03), 39-51.
17.Gimenes, N. C., Silveira, E., & Tambourgi, E. B. (2021). An overview of proteases: production, downstream processes and industrial applications. Separation & Purification Reviews, 50 (3), 223-243.
18.Kolodziejska, I., & Sikorski, Z. E. (1996). Neutral and alkaline muscle proteases of marine fish and invertebrates a review. Journal of Food Biochemistry, 20 (3), 349-364.
19.Chong, A. S., Hashim, R., Chow-Yang, L., & Ali, A. B. (2002). Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203 (3-4), 321-333.
20.Lerch, M. M., Halangk, W., & Krüger, B. (2002). The role of cysteine proteases in intracellular pancreatic serine protease activation. Cellular Peptidases in Immune Functions and Diseases 2, 403-410.
21.Adeli, A., & Baghaei, F. (2013). Production and supply of rainbow trout in Iran and the world. https://api.semanticscholar.org/CorpusID:73682681.
22.Food and Agriculture Organization (FAO). (2024). Aquaculture Growth Potential in Iran (Islamic Republic). United Nations.
23.Alvarez-González, C. A., Cervantes-Trujano, M., Tovar-Ramírez, D., Conklin, D. E., Nolasco, H., Gisbert, E., & Piedrahita, R. (2005). Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry, 31, 83-93.
24.Kolkovski, S. (2001). Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture, 200 (1-2), 181-201.
25.Fallah, A. A., Siavash Saei‐Dehkordi, S., & Nematollahi, A. (2011). Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 46 (4), 767-773.
26.Namjou, F., Yeganeh, S., Madani, R., & Ouraji, H. (2023). Effect of dietary trypsin extracted from the viscera of yellowfin sea bream, (Acanthopagrus latus) on growth performance, body composition, and digestive trypsin activity in Sobaity sea bream (Sparidentex hasta) larvae. Iranian Journal of Fisheries Sciences, 22 (3), 658-677.
27.Ai, Q., Mai, K., Zhang, W., Xu, W., Tan, B., Zhang, C., & Li, H. (2007). Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147 (2), 502-508.
28.Watanabe, T. A. K. E. S. H. I. (2002). Strategies for further development of aquatic feeds. Fisheries Science, 68 (2), 242-252.
29.Ganguly, S., Dora, K. C., Sarkar, S., & Chowdhury, S. (2013). Supplementation of prebiotics in fish feed: a review. Reviews in Fish Biology and Fisheries, 23, 195-199.
30.Yigit, N. O., Bahadir Koca, S., Didinen, B. I., & Diler, I. (2018). Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss, Walbaum) fed soybean meal-based diets. Journal of Applied Animal Research, 46 (1), 29-32.
31.Haghbayan, S., & Shamsaie Mehrgan, M. (2015). The effect of replacing fish meal in the diet with enzyme-treated soybean meal (HP310) on growth and body composition of rainbow trout fry. Molecules, 20 (12), 21058-21066.
32.Oliva-Teles, A., Gouveia, A. J., Gomes, E., & Rema, P. (1994). The effect of different processing treatments on soybean meal utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture, 124 (1-4), 343-349.
33.Assan, D., Kuebutornye, F. K. A., Hlordzi, V., Chen, H., Mraz, J., Mustapha, U. F., & Abarike, E. D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653.
34.Drew, M. D., Racz, V. J., Gauthier, R., & Thiessen, D. L. (2005). Effect of adding protease to coextruded flax: pea or canola: pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 119 (1-2), 117-128.
35.Kemi Gabo, C., Masembe, C., Jere, L. W., & Sikawa, D. (2017). Effects of protease enzyme supplementation on protein digestibility of legume and/or fish meal-based fish feeds. International Journal of Fisheries and Aquaculture,
9 (7), 73-80.
36.Saleh, E. S., Tawfeek, S. S., Abdel‐Fadeel, A. A., Abdel‐Daim, A. S., Abdel‐Razik, A. R. H., & Youssef, I. M. (2022). Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus). Journal of Animal Physiology and Animal Nutrition, 106 (2), 419-428.
37.Lin, S., Mai, K., & Tan, B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus × O. aureus. Aquaculture research, 38 (15), 1645-1653.
38.Dabrowski, K., & Glogowski, J. (1977). A study of the application of proteolytic enzymes to fish food. Aquaculture,
12 (4), 349-360.
39.Schneider, T. L. S., & Lazzari, R. (2022). Nutritional implications of exogenous proteases in fish feeding. Pesquisa Agropecuária Gaúcha, 28 (1), 70-93.
40.De Vecchi, S., & Coppes, Z. (1996). Marine fish digestive proteases-relevance to food industry and the south‐west Atlantic region-a review. Journal of Food Biochemistry, 20 (1), 193-214.
41.Dalsgaard, J., Bach Knudsen, K. E., Verlhac, V., Ekmann, K. S., & Pedersen, P. B. (2016). Supplementing enzymes to extruded, soybean‐based diet improves breakdown of non‐starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 22 (2), 419-426.