استخراج و تخلیص آنزیم لیپاز (EC 3.1.1.3) از روده ماهی هوور مسقطی (Katsuwenus pelamis)

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 نویسنده مسئول، پژوهشکده اکولوژی خلیج‌فارس و دریای عمان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران

2 مرکز تحقیقات زیست‌شناسی سلولی و مولکولی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

حدود 7 تا 8 درصد وزن بدن تون ماهیان را مجاری گوارشی تشکیل می دهد و به عنوان یک منبع اقتصادی برای استخراج آنزیم لیپاز می‌باشد. استخراج آنزیم با استفاده از بافر تریس هیدروکلرید (25 میلی مولار با pH؛ 8/7)، انجام شد. سپس عصاره خام در محدوده اشباع بین 30، 45 و 60 درصد سولفات آمونیوم رسوب کرده و دیالیز گردید. برای خالص سازی بیشتر از کروماتوگرافی تبادل یونی با استفاده از ستون DEAE-Cellulose با ابعاد (30 × 5/2 سانتی متر) و کروماتوگرافی فیلتراسیون ژل توسط ستون Sephadex G-100 (80×8/1 سانتی متر) استفاده شد. آنزیم های لیپاز خالص شده حاصل از ترسیب با سولفات آمونیوم 30، 45 و 60 درصد به ترتیب دارای وزن مولکولی (3/68، 41/38 و ND کیلودالتون)، pH (1/7، 9/6 و 4/7)، دمای بهینه (55، 42 و 38 درجه سانتی گراد) و فعالیت ویژه آنزیمی (42/3، 8/2 و U/mg 1/4) با استفاده از پارانیتروفنیل پالمیتات (pNPP) به عنوان سوبسترا بود. نتایج بیانگر امکان استخراج و تخلیص آنزیم لیپاز از دستگاه گوارش آبزیان با ویژگی های بیوشیمیایی مناسب جهت استفاده در صنایع شیمیایی و غذایی می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction and purification of lipase (EC 3.1.1.3) from the Skipjack intestine (Katsuwenus pelamis)

نویسندگان [English]

  • zabih alh bahmani 1
  • Bahram Kazemi 2
1 Corresponding Author, Persian Gulf and Sea of Oman Ecology Research Center, Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
2 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
چکیده [English]

About 7 to 8% of the body weight of tuna fish is the digestive tract and it is an economic source for lipase enzyme extraction. Enzyme extraction was done using Tris hydrochloride buffer (25 mM with pH; 7.8). Then the crude extract was precipitated and dialyzed in the range of saturation between 30, 45 and 60% ammonium sulfate. For further purification, ion exchange chromatography using a DEAE-CMC column with dimensions (2.5 × 30 cm) and gel filtration chromatography using a Sephadex G-100 column (1.8 × 80 cm) were used. Purified lipase enzymes obtained by precipitation with ammonium sulfate 30, 45 and 60%, respectively, have molecular weight (68.3, 38.41, and ND KDa), pH (7.1, 6.9, and 7.4), The optimal temperature (55, 42 and 38 °C) and specific enzyme activity (3.42, 2.8 and 1.4 U/mg) were using paranitrophenyl palmitate (pNPP) as a substrate. The results indicate the possibility of extracting and purifying lipase enzyme from the digestive system of aquatic animals with suitable biochemical characteristics for use in chemical and food industries.

کلیدواژه‌ها [English]

  • Intestinal Lipase Enzyme (ILE)
  • Ion exchange
  • Filtration
  • Molecular weight
1.Kurtovic, I., Marshall, S. N., Zhao, X., & Simpson, B. K. (2009). Lipases from mammals and fishes. Reviews in Fisheries Science, 17, 18-40.
2.Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57, 40-54.
3.Verma, N., Thakur, S., & Bhatt, A. K. (2012). Microbial Lipases: Industrial Applications and Properties (A review). International Research Journal of Biological Sciences, 1 (8), 88-92.
4.Colakoglu, A. S., & Özkaya, H. (2012). Potential use of exogenous lipases for DATEM replacement to modify the reological and thermal properties of wheat flour dough. Journal of Cereal Science, 55, 397-404.
5.Ali, H. K., Nasser, J. M., & Shaker, K. A. (2022). Extraction, purification and characterization of lipase from the digestive duct of common carp (Cyprinus carpio L.). Iraqi Journal of Agricultural Sciences, 53 (5), 1011-20.
6.Gorgun, S., & Akpinar, M. A. (2012). Purification and characterization of lipase from the liver of Carp (Cyprinus carpio, 1758) living in Lake Todurge (Sivas, Turkiye). Turkish Journal of Fisheries and Aquatic Sciences, 12, 207-215.
7.Anoushe, N., Madani, R., Hosseini, S., Zamani, A., & Emami, T. (2013). Purification of lipase enzyme from the anterior intestine of rainbow trout (Oncorhynchus mykiss). Fisheries Journal, 67 (3), 319-328. (In Persian)
8.Zamani, A., Rezaei, M., & Madani, R. (2011). Evaluation of the biochemical characteristics of trypsin enzyme purified from the intestine of Common kilka fish (Clupeonella cultriventris caspia). Journal of aquaculture exploitation and breeding, 11 (3), 41-56.
9.Ben Khaled, H., Bougatef, A., Balti, R., Triki‐Ellouz, Y., Souissi, N., & Nasri, M. (2008). Isolation and characterisation of trypsin from sardinelle (Sardinella aurita) viscera. Journal of the Science of Food and Agriculture, 88 (15), 2654-2662.
10.De la Parra, A. M., Rosas, A., Lazo, J. P., & Viana, M. T. (2007). Partial characterization of the digestive enzymes of Pacific bluefin tuna (Thunnus orientalis) under culture conditions. Fish Physiology and Biochemistry, 33, 223-231.
11.Rueda‐López, S., Martínez‐Montaño, E., & Viana, M. T. (2017). Biochemical characterization and comparison of pancreatic lipases from the Pacific bluefin tuna, Thunnus orientalis; totoaba, Totoaba macdonaldi; and striped bass, Morone saxatilis. Journal of the World Aquaculture Society, 48 (1), 156-165.
12.Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., & Simpson, B. K. (2007). Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 100, 1580-1589.
13.Mardina, V., Harmawan, T., Hildayani, G. M., & Yusof, F. (2018). Screening of protease and lipase sources from visceral organs of Euthynnus affinis. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 420 (1), 1-7.
14.Mardina, V., Harmawan, T., Fitriani, F., Sufriadi, E., Febriani, F., & Yusof, F. (2020). Euthynnus affinis viscera-an alternative source for protease and lipase enzymes: Characteristic and potential application as destainer agent: Euthynnus affinis viscera as source for protease and lipase enzyme. Biodiversitas Journal of Biological Diversity, 21 (12), 5858-5864.
15.Islam, M. A., Absar, N., & Bhuiyan, A. S. (2008). Isolation, purification and characterization of lipase from Grey mullet (Liza parsia Hamilton, 1822). Asian Journal of Biochemistry, 3 (4), 243-255.
16.Aryee, A., Simpson, B., & Villalonnga, R. (2007). Lipase fraction from the viscera of Grey mullet (Mugil cephalus) isolation, partial purification and some biochemical characteristics. Enzyme and Microbial Technology, 40, 394-402.
17.Bezerra, R. S., Lins, E. J. F., Alencar, R. B., Paiva, P. M. G., Chaves, M. E. C., Coelho, L. C., & Carvalho, Jr. L. B. (2005). Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry, 40, 1829-1834.
18.Klahan, R., Areechon, N., Yoonpundh, R., & Engkagul, A. (2009). Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Agriculture and Natural Resources, 43 (1), 143-53.
19.Bouchaâla, E., BouAli, M., Ali, Y. B., Miled, N., Gargouri, Y., & Fendri, A. (2015). Biochemical characterization and molecular modeling of pancreatic lipase from a cartilaginous fish, the common stingray (Dasyatis pastinaca). Applied biochemistry and biotechnology, 176 (1), 151-169.
20.Macedo, G. A., Lozano M. M. S., & Pastore, G. M. (2003). Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electronic Journal of Biotechnology, 6 (1), 72-75.
21.Morrissey, M. T., & Okada, T. (2007). Marine enzymes from seafood by-products. In maximising the value of marine by-products, Woodhead Publishing, 374-396.
22.Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680-685.
23.Senphan, T., Benjakul, S., & Kishimura, H. (2015). Purification and characterization of trypsin from hepatopancreas of Pacific white shrimp. Journal of Food Biochemistry, 39 (4), 388-397.
24.Borkar, P., Bodade, S. R. G., Rao, S. R., & Khobragade, C. N. (2009). Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT9. Brazilian Journal of Microbiology, 40 (2), 358-366.
25.Adhikari, S. (2019). Application of immobilized enzymes in the food industry. Enzymes in food biotechnology, 711-721.
26.Arnau, J., Yaver, D., & Hjort, C. M. (2020). Strategies and challenges for the development of industrial enzymes using fungal cell factories. Grand challenges in fungal biotechnology, 179-210.
27.Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8 (6), 238.
28.Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. Frontiers in bioengineering and biotechnology, 7, 110.
29.Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. (2012). Technology prospecting on enzymes: application, marketing
and engineering. Computational and structural biotechnology journal, 2 (3), e201209017.
30.Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. Biotechnology, 6: 1-5.
31.Khantaphant, S., & Benjakul, S. (2010). Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chemistry, 120 (3), 658-664.
32.Burgess, R. R. (2009). Protein precipitation techniques. Methods in enzymology, 463, 331-42.
33.Kurtovic, I., Marshall, S. N., Zhao, X., & Simpson, B. K. (2010). Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiology and Biochemistry, 36 (4), 1041-1060.
34.Castillo-Yáñez, F. J., Pacheco-Aguilar, R., García-Carreño, F. L., & de los Ángeles Navarrete-Del, M. (2005). Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140 (1), 91-98.
35.Villalba-Villalba, A. G., Ramírez-Suárez, J. C., Valenzuela-Soto, E. M., Sánchez, G. G., Ruiz, G. C., & Pacheco-Aguilar, R. (2013). Trypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991: Its purification and characterization. Food Chemistry, 141 (2), 940-5.
36.Nayak, J., Nair, P. G. V., Mathew, S., & Ammu, K. (2004). A study on the intestinal lipase of India major carp (Labeo rohita). Asian Fisheries Science, 17, 333-340.
37.Jellouli, K., Bougatef, A., Daassi, D., Balti, R., Barkia, A., & Nasri, M. (2009). New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: Purification and characterization. Food Chemistry,
116, 644-50.
38.Al-Aithy, M. (2012). Extraction of β-Glucan from barley bran and assessment of some functional properties and molecular weight. The Iraqi Journal of Agricultural Sciences, 43 (2), 100-108.
39.Rodwell, V. W., & Kenelly, P. J. (2003). Enzyme kinetics. In: Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W., editors. Harper’s Biochemistry. 26th Ed. New York, USA: McGraw-Hill. 60-71.
40.Klomklao, S., Benjakul, S., & Kishimura, H. (2010). Proteinases in hybrid catfish viscera: Characterization and effect of extraction media. Journal of Food Biochemistry, 34, 711-729.
41.Price, N. C., & Stevens, L. (1988). Fundamentals of Enzymology. Oxford University Press. 133-157.
42.Segel, I. H. (1976). Biochemical Calculations. 2nd Ed. John Wiley and Ssons. Inc. New York.
43.Prasertsan, P., & Prachumratana, T. (2008). Comparison and selection of protease and lipase sources from visceral organs of three tuna species. Songklanakarin J. Sci. Technol. 30, 73-76.