بررسی برخی از شاخص‌های ایمنی ذاتی،آنزیم‌های متابولیکی کبدی، رشد و بازماندگی در ماهی زبرای (Danio rerio) تغذیه شده با سطوح متفاوت مخمر اتولیزشده بر پایه ساکارومایسس سرویسیه (Saccharomyces cerevisiae)

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

تحقیق حاضر با هدف تعیین اثرات جیره حاوی مخمر اتولیزشده بر عملکرد ایمنی ذاتی، آنزیم‌های متابولیکی کبد، رشد و بازماندگی ماهی زبرا انجام شد.تعداد 480 قطعه ماهی زبرا به صورت تصادفی در آکواریوم‌هایی با حجم آب 40 لیتر به مدت 60 روز با سطوح مختلف مخمر اتولیزشده در جیره غذایی پایه شامل 1، 2 و 5 درصد جیره به همراه یک گروه شاهد (سه تکرار) به میزان 5 درصد وزن بدن مورد تغذیه قرار گرفتند. در پایان دوره، برای بررسی بازماندگی و عملکرد رشد زیست‌سنجی از تمام ماهیان صورت گرفت. برای سنجش برخی از شاخص‌های ایمنی ذاتی سرم مانند ایمونوگلوبولین کل، پروتئین کل، آلبومین و بررسی آنزیم‌های متابولیکی کبد (آلکالین فسفاتاز، آلانین آمینوترنسفراز، آسپارتات آمینوترنسفراز) از ماهیان به منظور تهیه سرم بطور تصادفی نمونه‌برداری صوررت گرفت (5 قطعه از هر تکرار). داده‌ها با استفاده از نرم افزارSPSS از طریق آنالیز واریانس یکطرفه مورد تجزیه و تجلیل قرار گرفتند. یافته‌های حاصل نشان داد که تغذیه ماهیان زبرا با سطوح متفاوت مخمراتولیزشده تاثیر معناداری در عملکرد رشد، درصد بازماندگی و آنزیم‌های کبدی گروه‌های تیمار در مقایسه با گروه شاهد نداشت (05/0<p). با این حال، بیشترین میزان پروتئین کل، ایمونوگلوبولین کل و آلبومین سرم به طور معناداری در تیمار تغذیه با مخمر اتولیزشده به میزان 5 درصد جیره بود (05/0>p). به طور کلی، نتایج نشان داد که استفاده از مخمراتولیزشده علی‌رغم اثر روی رشد، آنزیم‌های کبدی و بازماندگی، توانست سبب بهبود شاخص‌های ایمنی ذاتی در ماهی زبرا شود و بهترین سطح پیشنهادی در تحقیق حاضر، میزان 5 درصد جیره مخمر اتولیزشده معرفی گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of some innate immune indicators, liver metabolic enzymes, growth and survival in zebrafish (Danio rerio) fed with different levels of autolysed yeast based on Saccharomyces cerevisiae

نویسندگان [English]

  • Freshteh Khalili 1
  • Ali Shabani 2
  • Hamed Paknejad 1
  • Mohammad Mazandarani 1
1 Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

The present research was conducted with the aim of determining the effects of diet containing autolysed Saccharomyces cerevisiae yeast on innate immune function, liver metabolic enzymes, growth and survival of zebrafish. For this purpose, 480 pieces of zebra fish were randomly placed in aquariums with a water volume of 40 liters for 60 days with different levels of autolyzed yeast in the basic diet including 1, 2 and 5% of the diet along with a control group (three replications) to 5% of body weight were fed. At the end of the course, to check survival and growth performance (final weight, percentage of body weight gain, food conversion ratio, specific growth rate, obesity ratio), biometry was done on all fish. In order to measure some of the serum's inherent immunity indicators, such as total immunoglobulin, total protein, albumin, and to check liver metabolic enzymes (alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase), fish were randomly sampled in order to prepare serum. 5 pieces of each aquarium). Data were analyzed using SPSS software through one-way analysis of variance. The results showed that feeding zebrafish with different levels of yeast isolates had no significant effect on the growth performance, survival percentage and liver enzymes of the treatment groups compared to the control group (p<0.05). However, the highest amount of total protein, total immunoglobulin and serum albumin was significantly in the treatment of feeding with autolysed yeast at the rate of 5% of the diet (p<0.05). In general, the results showed that the use of synthesized yeast, despite its effect on growth, liver enzymes and survival, could improve the innate immunity indicators in zebrafish. And the best suggested level in this research is 5% of autolysed yeast diet.

کلیدواژه‌ها [English]

  • Zebrafish
  • Autolysed yeast
  • Innate immunity
  • Growth
  • liver metabolic enzymes
1.Bazarafshan, B., Sadeghi, H., Khalili, M., & Hosseinifar, S. H. (2014). Use of zebrafish (Danio rerio) as a research model in human studies. Journal of Ornamental Aquatics, 2 (3), 9-13.2.Van Doan, H., Hoseinifar, S.H., Sringarm, K., Jaturasitha, S., Yuangsoi, B., Dawood, M. A., Esteban, M. Á., Ringø, E., & Faggio, C. (2019). Effects of Assam tea extract on growth, skin mucus, serum immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish & Shellfish Immunology, 93, 428-435.3.Dawood, M. A., Koshio, S., Ishikawa, M., & Yokoyama, S. (2015). Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture, 442, 29-36.4.Langdon, A., Crook, N., & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome medicine, 8 (1), 1-16.5.Ramos, M. A. D. S., Da Silva, P. B., Spósito, L., De Toledo, L. G., Bonifácio, B. V., Rodero, C. F., Dos Santos, K. C., Chorilli, M., & Bauab, T. M. (2018). Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, 13, 1179.6.Dossou, S., Koshio, S., Ishikawa, M., Yokoyama, S., Dawood, M. A.,
El Basuini, M. F., El-Hais, A. M., & Olivier, A. (2018). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture, 490, 228-235.7.Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G., & Mohanta, K. N. (2013). Aquaculture and stress management: a review of probiotic intervention. Journal of Animal Physiology and Animal Nutrition,
97 (3), 405-430.8.Ernesto Ceseña, C., Vega-Villasante, F., Aguirre-Guzman, G., Luna-Gonzalez, A., & Campa-Cordova, A. (2021). Update on the use of yeast in shrimp aquaculture: a minireview. International Aquatic Research, 13 (1), 1-16.9.Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds-a review. Fishes, 5 (3), 22.10.Hansen, J. Ø., Lagos, L., Lei, P., Reveco-Urzua, F. E., Morales-Lange, B., Hansen, L. D., Schiavone, M., Mydland, L. T., Arntzen, M. Ø., Mercado, L., & Benicio, R. T. (2021). Down-stream processing of baker's yeast (Saccharomyces cerevisiae)–Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture, 530, 735707.11.Rawling, M., Leclercq, E., Foey, A., Castex, M., & Merrifield, D. (2021). A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). Plos one, 16 (1), e0245021.12.Yang, X., He, Y., Chi, S., Tan, B., Lin, S., Dong, X., Yang, Q., Liu, H., & Zhang, S. (2020). Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture, 529, 735655.13.Yousefi, S., Hoseinifar, S. H., Paknejad, H., & Hajimoradloo, A. (2018). The effects of dietary supplement of galactooligosaccharide on innate immunity, immune related genes expression and growth performance in zebrafish (Danio rerio). Fish and shellfish immunology, 73, 192-196. 14.Zakariaee, H., Sudagar, M., Hosseini, S. S., Paknejad, H., & Baruah, K. (2021). In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Frontiers in Microbiology, 12.15.Sönmez, A. Y. (2017). Evaluating two different additive levels of fully autolyzed yeast, Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, liver histology and fatty acid composition. Turkish Journal of Fisheries and Aquatic Sciences, 17 (2), 379-385.16.Adeoye, A. A., Obasa, S. O., Fawole, F. J., Wan, A. H., & Davies, S. J. (2020). Dietary supplementation of autolysed yeast enhances growth, liver functionality and intestinal morphology in African catfish. Aquaculture Nutrition, 26 (3), 772-780.17.Metinfar, A., Inayat Gholampour, T., Shabani Kakrodi, S., & Fadai Raini, M. (2017). The effect of garlic essential oil (Allium sativum) on growth and survival indicators, some blood biochemical indicators and digestive enzymes of zebra fish (Danio rerio). Scientific Journal of Iranian Fisheries, 27 (6), 143-149.18.Zargari, A., Mazandarani, M., & Hoseini, S. M. (2018). Effects of safflower (Carthamus tinctorius) extract on serum antibacterial activity of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila, Streptococcus iniae and Yersinia ruckeri. International Journal of Aquatic Biology, 6 (1), 1-7.19.El Basuini, M. F., Teiba, I. I., Zaki,M. A., Alabssawy, A. N., El-Hais, A. M., Gabr, A. A., Dawood, M. A., Zaineldin, A. I., Mzengereza, K., Shadrack, R. S., & Dossou, S. (2020) (a). Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative related genes expression of Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology,
98, 420-428. 20.Hevrøy, E., Espe, M., Waagbø, R., Sandnes, K., Ruud, M., & Hemre, G. I. (2005). Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11, 301-313. 21.Bekcan, S., Dogankaya, L., & Cakirogullari, G. C. (2006). Growth and body composition of European catfish (Silurus glanis L.) fed diets containing different percentages of protein. The Israeli Journal of Aquaculture – Bamidgeh, 58 (2), 137-142. 22.Tacon, A. G. J. (1990). Standard method for nutritional and feeding of farmed fish and shrimp. Universidad del Mar, México Biblioteca del Campus Puerto Ánge, 1, 117p.23.Safari, R., Hoseinifar, S. H., Van Doan, H., & Dadar, M. (2017). The effects of dietary Myrtle (Myrtus communis) on skin mucus immune parameters and mRNA levels of growth, antioxidant and immune related genes in zebrafish (Danio rerio). Fish & shellfish immunology, 66, 264-269.24.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 254.25.Siwicki, A. K., & Anderson, D. P. (1993). Nonspecific defence mechanisms assay in fish II; Potential killing activity of neutrophils and manocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In A.K. Siwicki, D.P. Anderson, and J. Waluga (ED.), Fish Disease Diagnosis and Preventions Methods (pp. 105-111). Wydawnictwo Instytutu Rybactwa Strodladowego, Olsztyn, Poland. NII Article ID (NAID):10019209712.26.Doumas, B. T., Watson, W. A., & Biggs, H. G. (1971). Albumin standards and the measurement of serum albumin with bromcresol green. Clinica chimica acta, 31 (1), 87-96.27.Fischbach, F., & Zawta B. (1992). Age-dependent reference limits of several enzymes in plasma at different measurement temperatures. Klin Lab. 38, 555-561.28.Reitman, S., & Frankel, A. (1957). Colorimetric method for determination of serum glutamate oxaloacetate
and glutamic pyruvate transaminase. American J. Clin. Pathol. 28, 56-58.29.Liu, J., Zhang, P., Wang, B., Lu, Y., Li, L., Li, Y., & Liu, S. (2022). Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 253, 109249.30.Zhang, P., Yang, F., Hu, J., Han, D., Liu, H., Jin, J., Yang, Y., Yi, J., Zhu, X., & Xie, S. (2020). Optimal form of yeast cell wall promotes growth, immunity and disease resistance in gibel carp (Carassius auratus gibelio). Aquaculture Reports, 18, 100465.31.Agboola, J. O., Øverland, M., Skrede, A., & Hansen, J. Ø. (2021). Yeast as major protein‐rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture, 13 (2), 949-970.32.Blomqvist, J., Pickova, J., Tilami, S. K., Sampels, S., Mikkelsen, N., Brandenburg, J., Sandgren, M., & Passoth, V. (2018). Oleaginous yeast as a component in fish feed. Scientific reports, 8 (1), 1-8.33.Mahdy, M. A., Jamal, M. T., Al-Harb, M., Al-Mur, B. A., & Haque, M. F. (2022). Use of yeasts in aquaculture nutrition and immunostimulation: A review. Journal of Applied Biology and Biotechnology, 10 (5), 59-65.
34.Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: A review. Carbohydrate polymers,68 (3), 587-597.35.Mohajer, E. M., Vahabzadeh, H., Zamini, A. A., Soudagar, M., & Ghorbani, N. R. (2010). Effect of dietary immunogen prebiotic on growth and survival indices of giant sturgeon (Huso huso Linne, 1758) juveniles.
New technologies in aquaculture development, 4 (3), 61-72.36.Hoseinifar, S.H ., Mirvaghefi, A., & Merrifield, D. L. (2011). The effects of dietary inactive brewer's yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture, 318 (1-2), 90-94.37.Taati, R., Soltani, M., Bahmani, M., & Zamini, A. A. (2011). Growth performance, carcass composition, and immunophysiological indices in juvenile great sturgeon (Huso huso) fed on commercial prebiotic, Immunoster. [In Press]38.Li, P., & Gatlin, D. M. (2004). Dietary brewer's yeast and the prebiotic Grobiotic®-Ainfluence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture. 231, 445-456.39.Aramli, M. S., Kamangar, B., & Nazari, R. M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish & shellfish immunology, 47 (1), 606-610.40.Yousefi, S., Monsef Shokri, M., Alaf Novirian, H., & Hosseini Far, S. H. (2019). The effects of yeast cell wall probiotics (Imnuval) on the growth and hematological parameters of juvenile Persian sturgeon. Journal of Animal Environmental, 12 (3), 21-228.41.Adel, M., Nayak, S., Lazado, C. C., & Yeganeh, S. (2016). Effects of dietary prebiotic grobiotic®‐a on growth performance, plasma thyroid hormones and mucosal immunity of great sturgeon, Huso huso (linnaeus, 1758). Journal of Applied Ichthyology, 32 (5), 825-831.42.Dalmo, R. A., & Bøgwald, J. (2008). ß-glucans as conductors of immune symphonies. Fish & shellfish immunology, 25 (4), 384-396.43.Hoseinifar, S. H., Esteban, M. Á., Cuesta, A., & Sun, Y. Z. (2015). Prebiotics and fish immune response: a review of current knowledge and future perspectives. Reviews in Fisheries Science & Aquaculture, 23 (4), 315-328.44.Dawood, M. A., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M. F., Hossain, M. S., Nhu, T. H., Moss, A. S., Dossou, S., & Wei, H. (2017). Dietary supplementation of β‐glucan improves growth performance, the innate immune response and stress resistance of red sea bream, P agrus major. Aquaculture Nutrition, 23 (1), 148-159.45.Zhang, Y., Zeng, H., Wang, Y., Zeng, S., & Zheng, B. (2014). Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food chemistry, 155, 311-318.46.Mohseni, M., Aftabgerd, M., Karmi-Nasab, M., Rast-Ravan, M. A., & Gol Alipour, Y. (2022). Investigating the effect of different amounts of soybean powder (Glycine max) containing phyzyme enzyme on blood parameters and liver enzyme activity of Caspian sea salmon (Salmo caspius Kessler, 1877). Scientific Journal of Iranian Fisheries, 30 (2), 117-121.47.Riche, M. (2007). Analysis of refractometry for determining total plasma protein in hybrid striped bass (Morone chrysops × M. saxatilis)at various salinities. Aquaculture,
264 (1-4), 279-284.48.Jahazi, M. A., Hoseinifar, S. H., Jafari, V., Hajimoradloo, A., Van Doan, H., & Paolucci, M. (2020). Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. Aquaculture, 517, 734709.49.Larbi Ayisi, C., Zhao, J., & Wu, J. W. (2018). Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PloS one, 13 (4), e0196100.50.Kaveri, S. V. (2012). Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmunity reviews, 11 (11), 792-794.51.Willis, T. G., & Dyer, M. J. (2000). The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood, The Journal of the American Society of Hematology, 96 (3), 808-822.52.Manayi, A., Vazirian, M., Zade, F. H., & Tehranifard, A. (2016). Immunomodulation effect of aqueous extract of the artist's conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), on the rainbow trout (Oncorhynchus mykiss). International Journal of Medicinal Mushrooms, 18 (10).53.Baba, E., Uluköy, G., & Öntaş, C. (2015). Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae. Aquaculture, 448, 476-482.54.Amiri, O., Miandare, H. K., Hoseinifar, S. H., Shabni, A., & Safari, R. (2018). Skin mucus protein profile, immune parameters, immune-related gene expression, and growth performance of rainbow trout (Oncorhynchus mykiss) fed white button mushroom (Agaricus bisporus) powder. International journal of medicinal mushrooms, 20 (4).55.Roy, D., Pal, S., Datta Ray, S., & Homechaudhuri, S. (2019). Evaluating oxidative stress in labeo rohita, infected asypmtomatically with native and invasive aeromonads using biochemical indices. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89 (3), 973-978.56.Sheikh Vaisi, R., Hedayati, A. A., Bagheri, T., Harnoudeh, A., Hosseini,
S. E., & Yavar, M. (2018). The protective effect of Lactobacillus probiotic pretreatment on the gill tissue of common carp (Cyprinus carpio) exposed to iron nanoparticles. Association of Environmental Specialists of Iran, in press.57.Adineh, H., Naderi, M., Hamidi, M. K., & Harsij, M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish & shellfish immunology, 95, 440-448.58.Naimi, A., Alizadeh, E., Haafarian, H., & Ahmadi Far, A. (2018). Effect of Selmanax probiotic on growth, hematological and biochemical factors of rainbow trout (Oncorhynchus mykiss). Journal of Veterinary Research, 74 (2), 175-185.59.Abu-Elala, N. M., Younis, N. A., AbuBakr, H. O., Ragaa, N. M., Borges, L. L., & Bonato, M. A. (2018). Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. The Egyptian Journal of Aquatic Research, 44 (4), 333-341.60.Jami, M. J., Kenari, A. A., Paknejad, H., & Mohseni, M. (2019). Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877). Fish & shellfish immunology, 91, 202-208.61.Khodadadi, A., Malekinejad, H., & Hosseini, M. S. (2021). Effects of diet supplementation with different level of Celmanax® (Saccharomyces cerevisiae cell wall with Mannan-Oligosaccharides) on health, environmental stress and Yersiniosis in Oncorhynchus mykiss. Iranian Journal of Aquatic Animal Health, 7 (2), 44-60.62.Ching, J. J., Shuib, A. S., Abdul Majid, N., & Mohd Taufek, N. (2021). Immunomodulatory activity of β‐glucans in fish: Relationship between β‐glucan administration parameters and immune response induced. Aquaculture Research, 52 (5), 1824-1845.63.Khanjani, M. H., Ghaedi, G., & Sharifinia, M. (2022). Effects of diets containing β‐glucan on survival, growth performance, haematological, immunity and biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture Research, 53 (5), 1842-1850.64.Pickering, A. D., & Pottinger, T. G. (1989). Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish physiology and biochemistry, 7 (1), 253-258.65.Bivareh, M. R., & Jafarian, H. (2016). The effect of Imax probiotic on growth performance, feeding efficiency and some biochemical factors of blood serum of common carp fingerlings. Animal Physiology and Development,
11 (1), 13-27.66.Ayoola, S. O., & Uzoamaka, O. O. (2013). Effect of Allium sativum on growth, feed utilization and haematological parameters of Clarias gariepinus juvenile. Afr. J. Livestock Exten. 12, 1-7.67.Ahmadifar, E., Akrami, R., Ghelichi, A., & Mohammadi Zarejabad, A. (2011). Effects of different dietary prebiotic inulin levels on blood serum enzymes, hematologic, and biochemical parameters of great sturgeon (Huso huso) juveniles. Comparative Clinical Pathology, 20 (5), 447-451.68.Denji, K. A., Mansour, M. R., Akrami, R., Ghobadi, S., Jafarpour, S. A., & Mirbeygi, S. K. (2015). Effect of dietary prebiotic mannan oligosaccharide (MOS) on growth performance, intestinal microflora, body composition, haematological and blood serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) juveniles. Journal of Fisheries and Aquatic Science, 10 (4), 255.