1.Araújo, O.Q.F., Medeiros, J.L., Yokoyama, L., and Morgado, C.R.V. 2015. Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage). Energy, 92: 556-8.
2.Becker, E.W. 2007. Microalgae as a source of protein. Biotechnology Advance, 25: 207-10.
3.Bligh, E.G., and Dyer, W.J. 1959. A rapid method for total lipid extraction and purification. Biochemical Physiology,
37: 911-7.
4.Borowitzka, M.A. 2013. High-value products from microalgae: their development and commercialization. Applied Phycology, 25: 743-56.
5.Boyle, N.R., and Morgan, J.A. 2009. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biology, Pp: 3-4.
6.Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72: 248-54.
7.Chen, F., Zhang, Y., and Guo, S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18: 603-8.
8.Chen, T., Zheng, W., Wong, Y.S.,Yang, F., and Bai, Y. 2006. Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose. Bioresource Technology, 97: 2260-5.
9.Chen, Y.H., and Walker, T. 2011. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 33: 1973-83.
10.Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances. 25: 3. 294-306.
11.Coca, M., Barrocal, V.M., Lucas, S., González-Benito, G., and García-Cubero, M.T. 2015. Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process, 94: 306-12.
12.Costa, J.A.V., Colla, L.M., and Filho, P.F.D. 2004. Improving Spirulina platensis biomass yield using a fedbatch process. Bioresource Technology, 92: 237-41.
13.Del Campo, J.A., García-González, M., and Guerrero, A.M. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Microbial Biotechnology, 74: 1163-74.
14.Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 3. 350-6.
15.Granum, E., Kirkvold, S., and Myklestad, S.M. 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: duel variations and effects of N depletion. The Marine Ecology Progress Series, 242: 82-93.
16.Griffiths, M., Garcin, C., Hille, R., and Harrison, S. 2011. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Microbiological Methods,85: 119-23.
17.Hu, B., Min, M., Zhou, W., Du, Z., Mohr, M., Chen, Zhu, J., Cheng, Y., Liu, Y., and Ruan, R. 2012. Enhanced mixotrophic growth of microalga Chlorella on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresource Technology, 126: 71-79.
18.Kaplan, F., Lewis, L.A., Wastian, J., and Holzinger, A. 2012. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma, 249: 789-804.
19.Kim, K., Hoh, D., Ji, Y., Do, H., and Lee, B. 2013. Wilhelm Holzapfel Impact of light intensity, CO2 concentration and bubble size on growth and fatty acid composition of Spirulina platensis KMMCC CY-007. Biomass bioenergy, 49: 181-187.
20.Krizek, D.T., Britz, S.J., and Mirecki, R.M. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth cv. New Leaf Fire lettuce. Physiol Plantarum, 103: 1-7.
21.Madhavi Shekharam, K., Venkataraman, L.V., and Salimath, P.V. 1987. Carbohydrate composition and characterization of two unusual sugars from the blue green alga, Spirulina platensis. Phyahtmiwy, 26: 8. 2267-9.
22.Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Fresh water biology,2: 4. 361-85.
23.Marquez, F.J., Nishio, N., Nagai, S., and Sasaki, K. 1995. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. Chemical, Technology and Biotechnology. 62: 159-64.
24.Marquez, F.J. 1999. Reassessment ofthe bioenergetic yield of Arthrospira platensis using continuous culture. Microbial biotechnology, 15: 209-11.
25.Minhas, A.K., Hodgson, P., Barrow, C.J., and Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiology, 3: 7. 546-65.
26.Ogawa, T., and Terui, G. 1970. Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. Fermentation Technology,48: 361-7.
27.Pandey, J.P., and Tiwari, A. 2010. Optimization of Biomass Production of Spirulina maxima. Algal Biomass Utilization, 1: 2. 20-32.
28.Perez-Garcia, O., de-Bashan, L.E., Hernandez, J.P., and Bashan, Y. 2010. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Phycology,46: 800-12.
29.Santos, R.R., Araújo, O.Q., Medeiros, J.L., and Chaloub, R.M. 2016. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology,204: 38-48.
30.Soletto, D., Binaghi, L., Ferrari, L., Lodi, A., Carvalho, J.C.M., Zilli, M., and Converti, A. 2008. Effects of carbon dioxide feeding rateand light intensity on the fed-batch pulse-feeding cultivationof Spirulina platensis in helical photobioreactor. Biochemical Engineering, 3: 369-75.
31.Stengel, D., Connan, and Popper, Z. 2011. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances, 29: 483-501.
32.Sun, N., Wang, Y., Li, Y.T., Huang, J.C., and Chen, F. 2008. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43: 1288-92.
33.Tarko, T., Duda-Chodak, A., and Kobus, M. 2012. Influence of Growth Medium Composition on Synthesis of Bioactive Compounds and Antioxidant Properties of Selected Strains of Arthrospira Cyanobacteria. Czech J. Food Sci.
30: 258-67.
34.Reed, R.H., Chudek, J.A., Foster, R., and Stewart, W.P.D. 1984. Osmotic adjustment in cyanobacteria from hypersaline environment. Archives of Microbiology, 138: 333-7.
35.Wagner, G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars free amino acids and anthocyanins in protoplast. Plant Physiology, 64: 88-93.
36.Wang, S.B., Chen, F., Sommerfeld, M., and Hu, Q. 2004. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta,220: 17-29.
37.Wellburn, A.R. 1994. The Spectral Determination of Chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiology, 144: 3. 307-13.
38.Yang, C., Hua, Q., and Shimizu, K. 2002. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Applied Microbiology and Biotechnology,
58: 813-22.
39.Zarrouk, C. 1966. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler Ph.D. Thesis, University of Paris.
40.Zhang, X., Rong, J., Chen, H., He, C., and Wang, Q. 2014. Current statusand outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Resources, 2: 1-32.
41.Zhang, X.W., Zhang, Y.M., and Chen, F. 1999. Application of mathematical models to the determination optimal glucose concentration and lightintensity for mixotrophic culture of Spirulina platensis. Process Biochemistry, 34: 477-81.