کشت میکسوتروف Spirulina platensis: پتانسیل تولید زیست توده، متابولیت ها و رنگدانه ها

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد گروه شیمی، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده

اخیرا جلبک Spirulina platensis بعنوان گونه زراعی مهم در جهان مطرح شد؛ هر‌چند معرفی و کشت آن در ایران در ابتدای راه است. در این راستا، کشت اتوتروف (فاقد گلوکز) و میکسوتروف این گونه در محیط های دارای 0، 5/0، 1، 5/1، 2، 3، 4، 6، 10، 20 گرم بر لیتر گلوکز در دانشگاه فردوسی مشهد انجام شد. تغییر شرایط رشد از اتوتروفی به میکسوتروفی، سبب تغییر ترکیب شیمیایی سلول ها بدلیل جهت گیری متفاوت تخصیص کربن به پروتئین، کربوهیدرات و لیپید شد. به طوری که کاربرد 5/0 گرم بر لیتر گلوکز در کشت میکسوتروفی سبب افزایش وزن خشک، غلظت سلول، پروتئین، کربوهیدرات، کلروفیل، فلاونوئید، آنتوسیانین و فایکواریترین به میزان به ترتیب 50/102، 06/106، 79/102، 38/141، 11/101، 82/129، 77/196 و 35/112 درصد نسبت به کشت اتوتروفی شد. همچنین شرایط میکسوتروفی دارای 6 و 4 گرم بر لیتر گلوکز سبب افزایش به ترتیب 93/337 و 24/317 درصدی کربوهیدرات نسبت به کشت اتوتروفی شدند. از طرف دیگر، کشت اتوتروف در افزایش تولید لیپید، فایکوسیانین و آلوفایکوسیانین موثرتر از میکسوتروفی بود. در کل، تغییر فرمولاسیون محیط های کشت مرسوم و افزودن 5/0 گرم بر لیتر گلوکز جهت افزایش معنی دار بهره‌وری و مواد موثره پیشنهاد می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Mixotrophic Cultures of Spirulina platensis: Potential Production of Biomass, Metabolites and Pigments

نویسندگان [English]

  • zahra rasouli 1
  • Mahdi Parsa 2
  • Hosein Ahmadzadeh 3
1 Ph.D. Student, Dept. of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Professor, Dept. of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran,
3 Professor, Dept. of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Iran
چکیده [English]

Spirulina platensis has recently been identified as an important crop in the world, although its introduction and cultivation in Iran are still at an early stage. In this regard, autotrophic (without glucose) and mixotrophic cultures were performed in 0, 0.5, 1, 1.5, 2, 3, 4, 6, 10, 20 g l-1 glucose at Ferdowsi University of Mashhad. The manipulation of the environmental conditions from autotrophy to mixotrophy caused changes in the chemical composition of the cells due to changes in the orientation of carbon allocation into proteins, carbohydrates and lipids. As the application of 0.5 g l-1 of glucose via mixotrophic condition increased dry weight, cell concentration, protein, carbohydrate, chlorophyll, flavonoids, anthocyanin and phycoerythrin by 102.50, 106.06, 102.79, 141.38, 101.11, 129.82, 196.77 and 112.35 percent relative to the autotrophic culture. Mixotrophic cultures of 6 and 4 g l-1 glucose enhanced the carbohydrate concentration by 337.93 and 317.24 percent in compare with autotrophic culture. On the other side, autotrophy was more effective on increasing the production of lipids, phycocyanin and allophycocyanin. Overall, a change in the formulation of the common culture media, and the addition of 0.5 g l-1 of glucose is recommended to increase the efficiency of culture and ingredients amounts.

کلیدواژه‌ها [English]

  • glucose
  • Mixotroph
  • Pigments
  • Phycobiliproteins
  • Protein
1.Araújo, O.Q.F., Medeiros, J.L., Yokoyama, L., and Morgado, C.R.V. 2015. Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage). Energy, 92: 556-8.
2.Becker, E.W. 2007. Microalgae as a source of protein. Biotechnology Advance, 25: 207-10.
3.Bligh, E.G., and Dyer, W.J. 1959. A rapid method for total lipid extraction and purification. Biochemical Physiology,
37: 911-7.
4.Borowitzka, M.A. 2013. High-value products from microalgae: their development and commercialization. Applied Phycology, 25: 743-56.
5.Boyle, N.R., and Morgan, J.A. 2009. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biology, Pp: 3-4.
6.Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72: 248-54.
7.Chen, F., Zhang, Y., and Guo, S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18: 603-8.
8.Chen, T., Zheng, W., Wong, Y.S.,Yang, F., and Bai, Y. 2006. Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose. Bioresource Technology, 97: 2260-5.
9.Chen, Y.H., and Walker, T. 2011. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 33: 1973-83.
10.Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances. 25: 3. 294-306.
11.Coca, M., Barrocal, V.M., Lucas, S., González-Benito, G., and García-Cubero, M.T. 2015. Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process, 94: 306-12.
12.Costa, J.A.V., Colla, L.M., and Filho, P.F.D. 2004. Improving Spirulina platensis biomass yield using a fedbatch process. Bioresource Technology, 92: 237-41.
13.Del Campo, J.A., García-González, M., and Guerrero, A.M. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Microbial Biotechnology, 74: 1163-74.
14.Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 3. 350-6.
15.Granum, E., Kirkvold, S., and Myklestad, S.M. 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: duel variations and effects of N depletion. The Marine Ecology Progress Series, 242: 82-93.
16.Griffiths, M., Garcin, C., Hille, R., and Harrison, S. 2011. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Microbiological Methods,85: 119-23.
17.Hu, B., Min, M., Zhou, W., Du, Z., Mohr, M., Chen, Zhu, J., Cheng, Y., Liu, Y., and Ruan, R. 2012. Enhanced mixotrophic growth of microalga Chlorella on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresource Technology, 126: 71-79.
18.Kaplan, F., Lewis, L.A., Wastian, J., and Holzinger, A. 2012. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma, 249: 789-804.
19.Kim, K., Hoh, D., Ji, Y., Do, H., and Lee, B. 2013. Wilhelm Holzapfel Impact of light intensity, CO2 concentration and bubble size on growth and fatty acid composition of Spirulina platensis KMMCC CY-007. Biomass bioenergy, 49: 181-187.
20.Krizek, D.T., Britz, S.J., and Mirecki, R.M. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth cv. New Leaf Fire lettuce. Physiol Plantarum, 103: 1-7.
21.Madhavi Shekharam, K., Venkataraman, L.V., and Salimath, P.V. 1987. Carbohydrate composition and characterization of two unusual sugars from the blue green alga, Spirulina platensis. Phyahtmiwy, 26: 8. 2267-9.
22.Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Fresh water biology,2: 4. 361-85.
23.Marquez, F.J., Nishio, N., Nagai, S., and Sasaki, K. 1995. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. Chemical, Technology and Biotechnology. 62: 159-64.
24.Marquez, F.J. 1999. Reassessment ofthe bioenergetic yield of Arthrospira platensis using continuous culture. Microbial biotechnology, 15: 209-11.
25.Minhas, A.K., Hodgson, P., Barrow, C.J., and Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiology, 3: 7. 546-65.
26.Ogawa, T., and Terui, G. 1970. Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. Fermentation Technology,48: 361-7.
27.Pandey, J.P., and Tiwari, A. 2010. Optimization of Biomass Production of Spirulina maxima. Algal Biomass Utilization, 1: 2. 20-32.
28.Perez-Garcia, O., de-Bashan, L.E., Hernandez, J.P., and Bashan, Y. 2010. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Phycology,46: 800-12.
29.Santos, R.R., Araújo, O.Q., Medeiros, J.L., and Chaloub, R.M. 2016. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology,204: 38-48.
30.Soletto, D., Binaghi, L., Ferrari, L., Lodi, A., Carvalho, J.C.M., Zilli, M., and Converti, A. 2008. Effects of carbon dioxide feeding rateand light intensity on the fed-batch pulse-feeding cultivationof Spirulina platensis in helical photobioreactor. Biochemical Engineering, 3: 369-75.
31.Stengel, D., Connan, and Popper, Z. 2011. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances, 29: 483-501.
32.Sun, N., Wang, Y., Li, Y.T., Huang, J.C., and Chen, F. 2008. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43: 1288-92.
33.Tarko, T., Duda-Chodak, A., and Kobus, M. 2012. Influence of Growth Medium Composition on Synthesis of Bioactive Compounds and Antioxidant Properties of Selected Strains of Arthrospira Cyanobacteria. Czech J. Food Sci.
30: 258-67.
34.Reed, R.H., Chudek, J.A., Foster, R., and Stewart, W.P.D. 1984. Osmotic adjustment in cyanobacteria from hypersaline environment. Archives of Microbiology, 138: 333-7.
35.Wagner, G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars free amino acids and anthocyanins in protoplast. Plant Physiology, 64: 88-93.
36.Wang, S.B., Chen, F., Sommerfeld, M., and Hu, Q. 2004. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta,220: 17-29.
37.Wellburn, A.R. 1994. The Spectral Determination of Chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiology, 144: 3. 307-13.
38.Yang, C., Hua, Q., and Shimizu, K. 2002. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Applied Microbiology and Biotechnology,
58: 813-22.
39.Zarrouk, C. 1966. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler Ph.D. Thesis, University of Paris.
40.Zhang, X., Rong, J., Chen, H., He, C., and Wang, Q. 2014. Current statusand outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Resources, 2: 1-32.
41.Zhang, X.W., Zhang, Y.M., and Chen, F. 1999. Application of mathematical models to the determination optimal glucose concentration and lightintensity for mixotrophic culture of Spirulina platensis. Process Biochemistry, 34: 477-81.