مروری بر امکان جایگزینی آرد حشرات با آرد ماهی در جیره ی غذایی آبزیان

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسنده

گروه حشره شناسی دانشگاه آزاد اسلامی

چکیده

کاهش دسترسی به آرد ماهی و همچنین افزایش قیمت آن موجب شده است تا جستجو برای جایگزین های مناسب آن شروع شود. حشرات که بخشی از غذای طبیعی ماهی ها محسوب می شوند، برای تکثیر به فضای کمی نیاز دارند و اثرات مخرب زیست محیطی آنها نیزکم است. رشد سریع، تکثیر آسان و کم هزینه، بازده مطلوب تبدیل خوراک به زیست توده و همچنین همانندی پروفایل اسید های آمینه (بجز هیستیدین، ترئونین و لیزین) موجود در آرد حشرات با آرد ماهی، از مزایای حشرات محسوب می شود. با این حال، مقدار اسید چرب موجود در آرد حشرات با میزان آن در آرد ماهی متفاوت است. آرد ماهیان دریایی غنی از اسید های چرب امگا3، به ویژه ایکوساپنتائنوئیک اسید (EPA) و دوکوزاهگزائنوئیک اسید(DHA) می باشد که عمدتا در حشرات وجود ندارد. ولی نسبت های بالاتری از اسید های چرب امگا 6 و چربی های غیر اشباع در حشرات دیده می شود. آرد حشرات دارای پروتئین بیشتر ولی چربی کمتری نسبت به آرد ماهی است. در بین راسته های حشرات، راسته ی دوبالان (Diptera) بیشترین مشابهت را با آرد ماهی دارا است. نتیجه ی بررسی ها نشان می دهد هرچند در پرورش بعضی از گونه ها از جمله ماهی های سالمون، گربه ماهی آفریقایی و تیلاپیای نیل می توان آرد حشرات را بطور کامل جایگزین آرد ماهی نمود ولی گونه هایی نیز هستند که سازگاری کمتری با آرد حشرات دارند. لذا تحقیقات بیشتری در این زمبنه مورد نیاز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review of the possibility of replacing fish meal with insect meal in aquatic diet

نویسنده [English]

  • abbas Arbab
Department of entomology, faculty of agriculture, Isalmic azad University
چکیده [English]

The decrease in the availability and the increase in the prices of fish meal have prompted the search for sustainable alternatives for aquaculture feeds. Insects, which are part of the natural diet of fish, leave a small ecological footprint and have a limited need for arable land, may represent a good candidate. Fast growth, fast and easy propagation, low-cost production, optimal feed conversion to biomass, and the similarity of the amino acid profile (except for histidine, threonine and lysine) with fish meal are considered to be the benefits of insects. However, the amount of fatty acids of insects varies with fish. Some fish meals are rich in omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and dioxaacetanoic acid (DHA), which is not commonly found in insects. But there are higher ratios of omega-6 fatty acids and unsaturated fats in insects. Insect meal has more protein but less fat than fish meal. Among the insect orders, the Diptera order is most similar to fish meal. The results of the research show that whilst the breeding of some species, such as salmon, African catfish and Nepal's Tilapia, can be used to completely replace meal of insects, but also species that are less compatible with insect meal. Therefore, further research is needed in this field.

کلیدواژه‌ها [English]

  • aquaculture
  • fish flour
  • insects
  • alternative feeds
1.Arbab, A. 2018. The role of insects in aquatic diets: a case study of mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Ornamental aquatics,5: 1. 41-52.
2.Arbab, A. 2018. Industrial insects: Volume I: Mealworm, Tenebrio molitor (Col.: Tenebrionidae) Familiarization, breeding, processing and applications. Islamic Azad Univ. Press, 215p.
3.Abanikannda, M.F. 2012. Nutrient digestibility and haematology of Nile tilapia (Oreochromis niloticus) fed with varying levels of locust (Locusta migratoria) meal. Bachelor of aquaculture and fisheries management, Federal University of Agriculture, Abeokuta, Ogun State.
4.Akiyama, T., Murai, T., Hirasawa, Y., and Nose, T. 1984. Supplementation of various meals to fishmeal diet for chum salmon fry. Aquaculture. 37: 217-222.
5.Alegbeleye, W.O., Obasa, S.O., Olude, O.O., Otubu, K., and Jimoh, W. 2012. Preliminaryevaluation of the nutritive value of the variegated grasshopper (Zonocerusvariegatus L.) for African catfish, Clariasgariepinus (Burchell, 1822) fingerlings. Aquaculture Research.43: 412-420.
6.Ayoola, A.A. 2010. Replacement ofFish Meal with Alternative Protein Source in Aquaculture Diets. M.Sc. Thesis, North California State University, North Carolina, USA.
7.Balian, E., Segers, H., Le´ve`que, C., and Martens, K. 2008. Thefreshwater animal diversity assessment: an overview ofthe results. In: Balian, E. et al. (eds), Freshwater AnimalDiversity Assessment. Hydrobiologia. 595: 627-637.
8.Balogun, B.I. 2011. Growth performance and feed utilization of Clarias gariepinus (Teugels) fed different dietary levels of soaked Bauhinia monandra (Linn.)seed meal and sun-dried locust meal (Schistocerca gregaria). Unpublished Ph.D Thesis, Ahmadu Bello University, Zaria.
9.Barroso, F.G., de Haro, C., Sánchez-Muros, M.J., Venegas, E., Martínez-Sánchez, A., and Pérez-Bañón, C. 2014. The potential of various insect speciesfor use as food for fish. Aquaculture.422-423: 193-201.
10.Belghit, I., Liland, N.S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å., and Lock, E.J. 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar)', Aquaculture. 491: 72-81.
11.Bell, J.G., Ghioni, C., and Sargent, J.R. 1994. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): A comparison with commercial diets. Aquaculture. 128: 301-313.
12.Bondari, K., and Sheppard, D.C. 1987. Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus puctatus Rafinesque, and blue tilapia, Oreochromis aureus (Steindachner) Aquaculture and Fisheries Mgt.
18: 209-20.
13.Borgogno, M., Dinnella, C., Iaconisi, V., Fusi, R., Scarpaleggia, C., Schiavone, A., Monteleone, E., Gasco, L., and Parisi, G. 2017. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 97: 3402-3411.
14.Chavez-Sanchez, C., Martinez-Palacios, C.A., Martinez-Perez, G., and Ross, L.G. 2000. Phosphorus and calcium requirements in the diet of the American cichlid Cichlasoma urophthalmus (Gunther). Aquaculture Nutrition. 6: 1. 1-10.
15.Collavo, A., Glew, R.H., Huang, Y.S., Chuang, L.T., Bosse, R., and Paoletti, M.G. 2005. Housecricket small-scale farming. In: Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. Ed. Paoletti, M.G. New Hampshire Science Publishers. Pp: 519-544.
16.Cummins, V.C.Jr, Rawles, S.D., Thompson, K.R., Velasquez, A., Kobaya-shi, Y., Hager, J., and Webster, C.D. 2017. Evaluation of black soldier fly (Hermetia illucens ) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei) Aquaculture. 473: 337-344.
17.Emre, Y., Sevgili, H., and Diler, I. 2003. Replacing fish meal with poultry by-product meal in practical diets for mirror carp (Cyprinus carpio) fingerlings. Turk. J. Fish. Aqua. Sci. 3: 81-85.
18.FAO. 2010. The State of World Fisheries and Aquaculture 2010. www.fao.org/3/a-i1820e.pdf.
19.FAO. 2016. The State of Word Fisheries and Aquaculture 2016 Contributing to Food.
20.Fasakin, E.A., Balogun, A.M., and Ajayi, O.O. 2003. Nutrition implication of processed maggot meals; hydrolyzed, defatted, full-fat, sun-dried and ovendried, in the diets of Clarias gariepinus fingerlings. Aquaculture Research. 9: 34. 733-738.
21.Henry, M., Gasco, L., Piccolo, G., and Fountoulaki, E. 2015.Review on the use of insects in the diet of farmed fish: Past and future Animal Feed Science and Technology, 203: 1-22.
22.Hickling, C.F. 1962. Fish culture. Faber and Faber, London, 296p.
 23.Idowu, A.B., Amusan, A.S., and Oyediran, A.G. 2003. The response of Clarias gariepinus (Burchell 1822) to the diet containing housefly maggot, (Musca domestica). Niger. J. Anim. Prod. 30: 1. 139-144.
24.Ji, W.X., Wang, Y., and Tang, J.Y. 2010. Apparent digestibility coefficients of selected feed ingredients for Japanese sea bass (Lateolabrax japonicus) reared in sea water. J. Fish. China. 34: 101-107.
25.Johri, R., Singh, R., and Johri, P.K. 2011. Histopathological examination of the gill, liver, kidney, stomach, intestine, testis and ovary of Clarias batrachus Linn. during the feeding on different formulated feeds. J. Exp. Zool. Ind.
14: 77-79.
26.Katya, K., Borsra, M.Z.S., Ganesan, D., Kuppusamy, G., Herriman, M., Salter, A., and Ali, S.A. 2017. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. International Aquatic Research, 9: 303-31.
27.Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., and Schulz, C. 2012. When a turbot catches a fly: evaluation of a prepupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute growth performance and chitin degradationin juvenile turbot (Psetta maxima). Aquaculture, 364-365: 345-352.
28.Lee, J., Choi, I.C., Kim, K.T., Cho,S.H., and Yoo, J.Y. 2012. Response of dietary substitution of fishmeal with various protein sources on growth, body com­position and blood chemistry of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846).
Fish Physiology and Biochemistry.38: 735-744.
29.Lindsay, G.J.H., Walton, M.J., Adron, J.W., Fletcher, T.C., Cho, C.Y., and Cowey, C.B. 1984. The growth of rainbow trout given diets containing chitin and its relationship to chitinolytic enzymes and chitin digestibility. Aquaculture, 37: 315-334.
30.Lock, E.J., Arsiwalla, T., and Waagbø, R. 2014. Insect meal: A promising source of nutrients in the diet of Atlantic salmon (Salmo salar). In: Insectsto Feed The World, The Netherlands, 14-17 May 2014. 74p.
31.Makkar, H.P.S., Tran, G., Heuzé, V., and Ankers, P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197: 1-33.
32.Médale, F., Le Boucher, R., Dupont-Nivet, M., Quillet, E., Aubin, J.,and Panserat, S. 2013. Des aliments à base de végétaux pour les poissons d’élevage. INRA Productions Animales. 26: 303-316.
33.Meeker, D.L. 2006. Essential rendering, all about the animal by-products industry, National Renderers Association, http:// assets.nationalrenderers.org/ essential, rendering, book.pdf.
34.Moraraki, N., and Mostafavi, Z. 2016. Evaluating the possibility of replacing fish meal with poultry by product meal with emphasis on
growth and feeding performance of gold severum (Cichlasoma severum)
. Ornamental aquatics, 3: 4. 9-17.
35.Nandeesha, M.C., Gangadhara, B., Varghese, T.J., and Keshavanath, P. 2000. Growth response and flesh quality of common carp, Cyprinus carpio fed with high levels of non-defatted silkworm pupae. Asian Fisheries Science. 13: 235-242.
36.Ng, W.K., Liew, F.L., Ang, L.P.,and Wong, K.W. 2001. Potentialof mealworm (Tenebriomolitor) asan alternative protein source in
practical diets for African catfish, Clariasgariepinus. Aquaculture Research, 32: 273-280.
37.Ogunji, J.O., Kloas, W., Wirth, M., Schulz, C., and Rennert, B. 2006. Housefly maggot meal (Magmeal): Anemergingsubstitute of fishmeal in Tilapia diets. Stuttgart-Hohenheim, Conference on International Agricultural Research for Development. October
11-13.
38.Ogunji, J.O., Toor, R., Schulz, C., and Kloas, W. 2008. Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turk. J. Fish. Aqua. Sci. 8: 141-147.
39.Oonincx, D., van Itterbeeck, J., Heetkamp, M., van den Brand, H., van Loon, JJA., and van Huis, A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. Plos One. 5: e14445.
40.Oso, JA., and Ola-Oladimeji, F.A. 2016. Preliminary assessment of growth performance and nutrient utilization of Clariasgariepinus (Burchell, 1822) Fingerlings fed Cirinaforda (Westwood, 1849) as protein source. Int. J. Aquacul. Fish. Sci. 2: 1. 039-042.
41.Ossey, Y.B., Koumi, A.R., Koffi, Atse, K.M.B.C., and Kouame, L.P. 2012. Use of soybean, bovine brain and maggot as sources of dietary protein in larval Heterobranchuslongifilis (Valenciennes, 1840). J. Anim. Plant Sci. 15: 2099.
42.Rapatsa, M.M., and Moyo, A.G.2017. Evaluation of Imbrasiabelina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histologicalanalysis and enzyme activity. Aquaculture Reports, 5, 18-26. Security and Nutrition for All, Rome.Link: https://goo.gl/31FI8D.
43.Riddick, E.W. 2014. Insect protein as partial replacement for fishmeal in the diets of juvenile fish and crustaceans. In: Morales-Ramos, J., Rojas, G., Shapiro- Ilan, D.I. (Eds.), Mass production of beneficial organisms. Invertebrates and Entomopathogens. Academic Press, San Diego, USA, Pp: 565-582.
44.Ring, E., Zigang, Z., Olsen, R.E.,and Song, S.K. 2012. Use of chitin and krill in aquaculture-the effect on gut microbiota and the immune system. A review. Aquaculture Nutrition, 18: 2. 117-131.
45.Rust, M.B. 2002. Nutritional physiology. P 368-446. In: Fish nutrition (ed. By Halver J.E., Hardy R.W.). The Academic Press, New York, USA.
46.Sánchez-Muros, M.J., Barroso, F.G., and de Haro, C. 2016. Brief summary of insect usage as an industrial animal feed/feed ingredient. In: Dossey, A.T., Morales-Ramos, J.A., & Rojas, M.G. (Eds.) Insects as Sustainable Food Ingredients, P 273-309. San Diego: Academic Press.
47.Sanchez-Muros, M.J., Barroso, F.G., and Manzano-Agugliaro, F. 2014. Insect meal as renewable source of food for animal feeding: A review. J. Clean Prod. 65: 16-27.
48.Sawhney, S. 2014. Effect offeeding levels on the growth of Tor putitoraat fry and fingerling. Asi. J. Sci. Technol. 5: 6. 348-351.
49.Sogbesan, A.O., Adebisi, A.A., Falaye B.A., Okaeme, B.N., and Made, C.T. 2006. Some aspects of dietary protein deficiency diseases in semi intensive cultured fishes. A review J. Arid Zone Fish. 2: 1. 80-89.
50.Stamer, A., Wesselss, S., Neidigk, R., and Hoerstgen-Schwark, G. 2014
Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredient’s class in aquaculture diets. Paper presented at the 4th ISOFAR scientific conference “Building Organci Bridges”, at the organic world conference, Istanbul, Turkey, 13-15.
51.St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W., Sheppard, C., and Irving, S. 2007. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquacul. Soc. 38: 309-313.
52.Tacon, A.G.C., Haasterj, V., Featherstonep, B., Kerr, K., and Jackson, A.J. 1983. Studies on the utilisation of full-fat soybean and solvent extracted soybean meal in a complete diet for rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries. 49: 1437-1443.
53.Thoman, E.S., Davids, A., and Arnold, C.R. 1999. Evaluation of growth out diets with varying protein and energy levels for red drum. Aquaculture.
176: 343-353.
54.Tran, G., Heuzé, V., and Makkar, H.P.S. 2015. Insects in fish diets. Animal Frontiers. 5: 37-44.
 55.Tschirner, M., and Kloas, W. 2017. Increasing the Sustainability of Aquaculture Systems: Insects as alternative protein source for fish diets.Fish Diets, GAIA26/4: 332-340.
56.Venkatesh, B., Mukherji, A.P., Mukhopadhyay, P.K., and Dehadrai, P.V. 1986. Growth and metabolism of the catfish Clarias batrachus fed with different experimental diets. Proceding ofIndian Academy of Sciences (Anim. Sci.). 95: 457-462.
57.Webster, C.D., Rawles, S.D., Koch, J.F., Thompson, J.R., Kobayashi, Y., Gannam, A.L., Twibell, R.G., and Hyde, N.M. 2015. Bio-Ag reutilization of distiller’s dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along
with poultry by-product meal and soybean meal, as total replacement
of fishmeal in diets for Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition. 22: 976-988.