ارزیابی خصوصیات فیلم‌ دولایه آگار/ کازئینات سدیم حاوی نانوذرات اکسید روی

نوع مقاله : مقاله کامل علمی - پژوهشی

نویسندگان

1 گروه اموزشی فراوری محصولات شیلاتی-دانشکده شیلات و محیط زیست-دانشگاه علوم کشاورزی ومنابع طبیعی گرگان. گرگان-ایران

2 استادیار گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 گروه آموزشی فراوری محصولات شیلاتی- دانشکده شیلات و محیط زیست- دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان- ایران

چکیده

تحقیق حاضر به بررسی اثر افزودن نانواکسید روی بر خواص فیزیکی، مکانیکی و ظاهری فیلم‌های دولایه آگار/کازئینات سدیم پرداخته است. نانوذرات اکسید روی در غلظت‌های مختلف (5/0، 1 و 2 درصد وزنی) به ماتریس پلیمری کازئینات سدیم در فیلم دولایه افزوده شد. خواص مکانیکی، رطوبت و حلالیت، نفوذپذیری به بخار آب، درصد جذب‌آب، خواص رنگی و شفافیت فیلم‌ها مورد مطالعه قرار گرفت. نتایج نشان داد که افزودن 2 درصد اکسید روی به فیلم دولایه باعث کاهش بیش از 32 درصد نفوذپذیری نسبت به بخار آب در فیلم‌های تولیدی شد. نرخ جذب‌آب و میزان حلالیت نیز با افزایش مقدار اکسید روی کاهش یافت. مقاومت کششی فیلم دولایه با افزایش غلظت اکسید روی تا 2 درصد، از 05/26 مگاپاسکال به 48/41 مگاپاسکال افزایش یافت ولی ازدیاد طول در نقطه شکست با افزایش غلظت نانوذره تا 1 درصد، ‌روند افزایشی داشت. با افزایش غلظت نانوذرات اکسید روی به 2 درصد، خاصیت نفوذپذیری نور کاهش و کدورت فیلم‌های تولیدی افزایش یافت

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The assessment of of bilayer agar- sodium caseinat film properties containing ZnO nanoparticles

نویسندگان [English]

  • zahra ghafoori ahangar 1
  • Parastoo Pourashouri 2
  • seyed mahdi ojagh 3
  • bahareh shabanpour 4
1 department of Seafood processing Fisheries Sciences-college of Fisheries and Environment Sciences- Gorgan University of Agricultural Sciences and Natural Resources. Gorgan-Iran
2 ...
3 .
4 department of Seafood Processing Fisheries Sciences, College of Fisheries and Environment Sciences, Gorgan University of Agricultural Sciences and Natural Resources , gorgan, iran.
چکیده [English]

This study has investigated the effect of ZnO nanoparticle on physical, mechanical and optical properties of sodium caseinate/ agar bilayer film. The ZnO nanoparticles were added to the polymer matrix sodium caseinate in various concentrations (0.5, 1 and 2 wt.%) in a bilayer film. Mechanical properties, moisture and solubility, water vapor permeability (WVP), water absorption, color properties and transparency of films were studied. According to the results, addition of 2% ZnO to the bilayer film showed a 32% reduction of WVP in treatments than control. The water absorption rate and solubility were reduced in high percentage of ZnO. The tensile strength of a bilayer film also increased from 26.05 MPa to 41.48 MPa by increasing ZnO concentration up to 2%; but increasing the elongation showed significant increasing up to 1% nanoparticles. High amount of nanoparticles were reduced the permeability of light, and increased the opacity of the films.

کلیدواژه‌ها [English]

  • bilayer film
  • agar
  • sodium caseinate
  • nano zinc oxide
1. Abdollahi, M., Rezaei, M., and Farzi, G.
2012. A novel active bionanocomposite
film incorporatingrosemary essential oil
and nanoclay into chitosan. Journal of
Food Engineering, 111(2): 343-350.
2. Abdollahi, M., Alboofetileh, M., Rezaei,
M., and Behrooz, R. 2013. Comparing
physico-mechanical andthermal
properties of alginate nanocomposite
films reinforced with organic and/or
inorganic nanofillers. Food
Hydrocolloids, 32(2): 416-424.
3. Adame, D., and Beall, G.W. 2009.
Direct measurement of the constrained
polymer region inpolyamide/clay
nanocomposites and the implications for
gas diffusion. Applied Clay Science,
42(3): 545552.
4. Arancibia, M., Giménez, B., López-
Caballero, M.E., Gómez-Guillén, M.C.,
and Montero, P. 2014.Release of
cinnamon essential oil from
polysaccharide bilayer films and its use
for microbial growthinhibition in chilled
shrimps. LWT-Food Science and
Technology, 59(2), 989-995.
5. ASTM. 2002a. Standard test methods
for tensile properties of thin plastic
sheeting, D882-91. Annualbook of
ASTM, American Society for Testing
and Material. Philadelphia, PA.
6. ASTM. 2002b. Standard test methods
for tensile properties of thin plastic
sheeting, D882-91. Annualbook of
ASTM, American Society for Testing
and Material. Philadelphia, PA.
7. Atarés, L., Bonilla, J., and Chiralt, A.
2010. Characterization of sodium
caseinate-based edible filmsincorporated
with cinnamon or ginger essential oils.
Journal of Food Engineering, 100(4):
678-687.
8. Baldwin, E.A., Hagenmaier, R., and Bai,
J. (Eds.). 2011. Edible coatings and
films to improve food quality. CRC
Press.
9. De Lacey, A.L., López-Caballero, M.E.,
and Montero, P. 2014. Agar films
containing green tea extractand probiotic
bacteria for extending fish shelf-life.
LWT-Food Science and Technology,
55(2): 559-564.
10. Emiroğlu, Z.K., Yemiş, G.P., Coşkun,
B.K., and Candoğan, K. 2010.
Antimicrobial activity of soy ediblefilms
incorporated with thyme and oregano
essential oils on fresh ground beef
patties. Meat science, 86(2): 283-288.
11. Espitia, P.J.P., Soares, N.D.F.F.,
Teófilo, R.F., dos Reis Coimbra, J.S.,
Vitor, D.M., Batista, R.A., and
Medeiros, E.A.A. 2013. Physical–
mechanical and antimicrobial properties
of nanocomposite filmswith pediocin
and ZnO nanoparticles. Carbohydrate
polymers, 94(1): 199-208.
12. Fabra, M.J., Talens, P., and Chiralt, A.
2010. Water sorption isotherms and
phase transitions of sodiumcaseinate–
lipid films as affected by lipid
interactions. Food hydrocolloids, 24(4):
384-391.
13. Ghanbarzadeh, B., Musavi, M.,
Oromiehie, A.R., Rezayi, K., Rad, E.R.,
and Milani, J. 2007. Effect ofplasticizing
sugars on water vapor permeability,
surface energy and microstructure
properties of zein films.LWT-Food
Science and Technology, 40(7): 1191-
1197.
14. Gómez-Estaca, J., López de Lacey, A.,
Gómez-Guillén, M.C., López-Caballero,
M.E., & Montero, P.2009. Antimicrobial
activity of composite edible films based
on fish gelatin and chitosan
incorporatedwith clove essential oil.
Journal of Aquatic Food Product
Technology, 18(1-2), 46-52.
15. Gómez-Estaca, J., López de Lacey, A.,
López-Caballero, M.E., Gómez-Guillén,
M.C., and Montero, P. 2010.
Biodegradable gelatin–chitosan films
incorporated with essential oils as
antimicrobial agents forfish
preservation. Food Microbiology, 27(7):
889-896.
16. Han, J.H., and Gennadios, A. 2005.
Edible films and coatings: A review.
Innovations in food packaging. Food
science and technology international
series London: Elsevier., Pp: 239–259.
17. Ibrahim, M.M., El-Zawawy, W.K., and
Nassar, M.A. 2010. Synthesis and
characterization of
polyvinylalcohol/nanospherical
cellulose particle films. Carbohydrate
Polymers, 79(3): 694-699.
18. Iturriaga, L., Olabarrieta, I., and de
Marañón, I.M. 2012. Antimicrobial
assays of natural extracts and
theirinhibitory effect against Listeria
innocua and fish spoilage bacteria, after
incorporation into biopolymeredible
films. International journal of food
microbiology, 158(1): 58-64.
19. Yu, J., Yang, J., Liu, B., and Ma, X.
2009. Preparation and characterization
of glycerol plasticized-peastarch/ZnO–
carboxymethylcellulose sodium
nanocomposites. Bioresource
Technology, 100(11): 28322841.
20. Krochta, J.M., Pavlath, A.E., and
Goodman, N. 1990. Edible films from
casein-lipid emulsions for
lightlyprocessed fruits and vegetables.
Engineering and food, 2: 329-340.
21. Lavorgna, M., Piscitelli, F.,
Mangiacapra, P., and Buonocore, G.G.
2010. Study of the combined effect
ofboth clay and glycerol plasticizer on
the properties of chitosan films.
Carbohydrate Polymers, 82(2): 291-
298.
22. Letendre, M., D'aprano, G., Lacroix, M.,
Salmieri, S., and St-Gelais, D. 2002.
Physicochemical propertiesand bacterial
resistance of biodegradable milk protein
films containing agar and pectin.
Journal ofagricultural and food
chemistry, 50(21): 6017-6022.
23. Li, L.H., Deng, J.C., Deng, H.R., Liu,
Z.L., and Li, X.L. 2010. Preparation,
characterization andantimicrobial
activities of chitosan/Ag/ZnO blend
films. Chemical Engineering Journal,
160(1): 378-382.
24. Lin, W., Xu, Y., Huang, C.C., Ma, Y.,
Shannon, K.B., Chen, D.R., and Huang,
Y.W. 2009. Toxicity ofnano-and microsized
ZnO particles in human lung
epithelial cells. Journal of Nanoparticle
Research, 11(1): 25-39.
25. Ma, X., Chang, P.R., Yang, J., and Yu,
J. 2009. Preparation and properties of
glycerol plasticized-peastarch/zinc
oxide-starch bionanocomposites.
Carbohydrate polymers, 75(3): 472-478.
26. Marvizadeh, M.M., Nafchi, A.M., and
Jokar, M. 2014. Improved
physicochemical properties of
tapiocastarch/bovine gelatin
biodegradable films with zinc oxide
nanorod. Journal of Chemical Health
Risks, 4(4).
27. Marvizadeh, M.M., Oladzadabbasabadi,
N., Nafchi, A.M., and Jokar, M. 2017.
Preparation andcharacterization of
bionanocomposite film based on tapioca
starch/bovine gelatin/nanorod zinc
oxide. International Journal of
Biological Macromolecules, 99: 1-7.
28. Mu, C., Guo, J., Li, X., Lin, W., and Li,
D. 2012. Preparation and properties of
dialdehyde carboxymethylcellulose
crosslinked gelatin edible films. Food
Hydrocolloids, 27(1): 22-29.
29. Nafchi, A.M., Alias, A.K., Mahmud, S.,
and Robal, M. 2012. Antimicrobial,
rheological, andphysicochemical
properties of sago starch films filled
with nanorod-rich zinc oxide. Journal of
foodengineering, 113(4): 511-519.
30. Pantani, R., Gorrasi, G., Vigliotta, G.,
Murariu, M., and Dubois, P. 2013. PLAZnO
nanocomposite films: Water vapor
barrier properties and specific end-use
characteristics. European Polymer
Journal, 49(11): 3471-3482.
31. Pereda, M., Amica, G., Rácz, I., and
Marcovich, N.E. 2011. Preparation and
characterization of sodiumcaseinate
films reinforced with cellulose
derivatives. Carbohydrate Polymers,
86(2): 1014-1021.
32. Phan, T.D., Debaufort, F., Voilley, A.,
and Luu, D. 2009. Biopolymer
interactions affectthe functionalproperties of edible films
based on agar, cassava and arabinoxylanblends. Journal of Food
Engineering, 90: 548-558.
33. Rešček, A., Kratofil Krehula, L.,
Katančić, Z., and Hrnjak-Murgić, Z.
2015. Active bilayer PE/PCL filmsfor
food packaging modified with zinc
oxide and casein. Croatica Chemica
Acta, 88(4): 461-473.
34. Rhim, J.W., and Ng, P.K. 2007. Natural
biopolymer-based nanocomposite films
for packagingapplications. Critical
reviews in food science and nutrition,
47(4): 411-433.
35. Rhim, J.W. 2011. Effect of clay contents
on mechanical and water vapor barrier
properties of agar-basednanocomposite
films. Carbohydrate polymers, 86(2):
691-699.
36. Rouhi, J., Mahmud, S., Naderi, N., Ooi,
C.R., and Mahmood, M.R. 2013.
Physical properties of fishgelatin-based
bio-nanocomposite films incorporated
with ZnO nanorods. Nanoscale research
letters, 8(1): 364.
37. Tunc, S., Angellier, H., Cahyana, Y.,
Chalier, P., Gontard, N., and Gastaldi, E.
2007. Functional propertiesof wheat
gluten/montmorillonite nanocomposite
films processed by casting. Journal of
MembraneScience, 289(1): 159-168.
38. Tunç, S., and Duman, O. 2010.
Preparation and characterization of
biodegradable methylcellulose/montmorillonite
nanocomposite films. Applied Clay
Science, 48(3): 414-424.
39. Savadekar, N.R., and Mhaske, S.T.
2012. Synthesis of nano cellulose fibers
and effect on thermoplasticsstarch based
films. Carbohydrate polymers, 89(1):
146-151.
40. Shankar, S., and Rhim, J.W. 2017.
Preparation and characterization of
agar/lignin/silver nanoparticlescomposite films with
ultraviolet light barrier and antibacterial
properties. Food Hydrocolloids, 71: 76-
84.
41. Sothornvit, R., and Krochta, J.M. 2001.
Plasticizer effect on mechanical
properties of β-lactoglobulinfilms.
Journal of Food Engineering, 50(3):
149-155.
42. Vejdan, A., Ojagh, S.M., Adeli, A., and
Abdollahi, M. 2016. Effect of TiO2
nanoparticles on the physicomechanical
and ultraviolet light barrier properties of
fish gelatin/agar bilayer film. LWT-Food
Science andTechnology, 71: 88-95.
43. Wu, Y., Geng, F., Chang, P.R., Yu, J.,
and Ma, X. 2009. Effect of agar on the
microstructure andperformance of
potato starch film. Carbohydrate
Polymers, 76(2): 299-304.
44. Yu, J., Yang, J., Liu, B., and Ma, X.
2009. Preparation and characterization
of glycerol plasticized-peastarch/ZnO–
carboxymethylcellulose sodium
nanocomposites. Bioresource
Technology, 100(11): 28322841.