مروری بر محصولات تجاری شده جلبک ها و کاربرد آنها در صنایع مختلف

نوع مقاله : مقاله کامل علمی ترویجی

نویسندگان

1 نویسنده مسئول، استادیار مرکز ملی تحقیقات فرآوری آبزیان، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرانزلی، ایران.

2 استادیار مرکز ملی تحقیقات فرآوری آبزیان، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرانزلی، ایران

چکیده

جلبک‌ها منبع مهمی برای استخراج ترکیبات زیست فعال می‌باشند. تاکنون ترکیبات متعددی در این منابع شناسایی، استخراج و در نهایت در صنایع مختلف مورد استفاده قرار گرفته‌اند. مطالعه حاضر، مروری بر محصولات تجاری شده جلبک‌ها و ترکیبات مشتق شده آنها و همچنین کاربردهای این محصولات در صنایع مختلف می‌باشد. نتایج مطالعه حاضر نشان داد که خوراک حیوانات، محصولات غذایی و غذا/داروها عمده‌ترین محصولات تجاری شده جلبک‌ها می‌باشند. ماکرو جلبک‌های Nori، Wakame، Kombu و Dulse رایج‌‌ترین گونه‌ها برای مصرف بعنوان غذای انسان هستند. میکروجلبک‌های Spirulina و Chlorella به طور گسترده‌ای به عنوان مکمل‌های غذایی برای انسان و حیوانات مورد استفاده قرار می‌گیرند. آگار، آلژینات، کاراگینان و فوکوئیدان مهمترین پلی ساکاریدهای تجاری شده از ماکروجلبک‌ها بوده و در فرمولاسیون محصولات غذایی، آرایشی-بهداشتی و مکمل‌ها کاربرد دارند. فوکوزانتین، آستاگزانتین، بتاکاروتن و فیکو بیلی پروتئین‌ها، رنگدانه‌های استخراج شده از جلبک‌ها می‌باشند که بعنوان رنگ طبیعی در محصولات غذایی، آرایشی-بهداشتی و خوراک حیوانات استفاده می‌شوند. اسیدهای چرب غیراشباع چندگانه یکی دیگر از محصولات با ارزش بالا استخراج شده از جلبک‌ها بوده که دارای ویژگی‌های ارتقاء دهنده سلامتی و کاربردهای بالقوه در صنایع مختلف هستند. علاوه بر اینها، جلبک‌ها در صنعت آبزی پروری و کودهای کشاورزی نیز کاربرد دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on commercialized algae products and their application in different industries

نویسندگان [English]

  • Mehdi Alboofetileh 1
  • Samira Jeddi 2
1 Corresponding Author, Assistant Prof., Fish Processing Technology Research Center, Iranian Fisheries Science Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Anzali, Iran
2 Assistant Prof., Fish Processing Technology Research Center, Iranian Fisheries Science Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Anzali, Iran
چکیده [English]

Algae are an important source of bioactive compounds extraction. To date, several compounds have been identified and extracted from algae and finally used in the different industries. The present study reviews the commercialized algae products and their derivatives, as well as applications of these products in the different industries. This study showed that animal feed, food products and nutraceuticals are the major commercialized algae products. Nori, Wakame, Kombu and Dulse are the most common macroalgae species for human consumption. Spirulina and Chlorella are widely used as food supplements for humans and animals. Agar, Alginate, Carrageenan and Fucoidan are the most important polysaccharides extracted and commercialized from macroalgae and they are used in the formulation of food products, cosmetics and nutraceuticals. Fucosantine, astaxanthin, beta-carotene, and phycobiliproteins are algae-derived pigments which used as natural dyes in food products, cosmetics, and animal feed. Polyunsaturated fatty acids are another high value product extracted from algae that has health-promoting properties and a potential applications in different industrial. In addition, algae are used in aquaculture and agricultural fertilizers.

کلیدواژه‌ها [English]

  • Algae
  • Bioactive compounds
  • Biological properties
  • Commercialized products
  • Different industries
1.Aneiros, A., and Garateix, A. 2004. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B. 803: 41-53.
2.Guiry, M.D. 2012. How many species of algae are there?. J. Phycol. 48: 1057-1063.
3.Athukorala, Y., Kim, K.N., and Jeon, Y.J. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44: 1065-1074.
4.Kuda, T., Taniguchi, E., Nishizawa, M., and Araki, Y. 2002. Fate of Water-Soluble Polysaccharides in Dried chordafilum a Brown Alga duringWater Washing. J. Food Compos. Anal. 15: 1. 3-9.
5.Morris, E.R. 1977. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J. Mol. Biol. 110: 1. 1-16.
6.Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, H., and Rim, S.K. 2015. Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 72: 269-281.
7.Mazumder, A., Holdt, S.L., Francisci, D.D., Morales, M.A., Mishra, H.N., and Angelidaki, I. 2016. Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J. Appl. Phycol. 28: 3625-3634.
8.Fawzy, M.A., Gomaa, M., Hifney,A.F., and Abdel-Gawad, K.M. 2017. Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr. Polym. 157: 1903-1912.
9.Torres, M.R., Sousa, A.P.A., Filho, E.A.T.S., Melo, D.F., Feitosa, J.P.A., Regina, C.M., de Paula, R.C.M., and Lima, M.G.S. 2007. Extraction and physicochemical characterization of Sargassum vulgare alginatefrom Brazil. Carbohydr. Res. 342: 2067-2074.
10.Larsen, B., Salem, D.M.S.A., Sallam, M.A.E., Mishrikey, M.M., and Beltagy, A. 2003. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr. Res. 338: 22. 2325-36.
11.Jeddi, S., Rezaei, M., and Alboofetileh, M. 2021. Extraction, Antioxidant and Emulsifying Properties of Alginate from Brown Seaweed Sargassum ilicifolium. Iran. J. Fish. Sci. 29: 6. 167-178. (In Persian)
12.Lee, K.Y., and Mooney, D.J. 2012. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37: 106-126.
13.Meenakshi, S., Parvathi, U.S., Arumugam, M., and Balasubramaniang, T. 2011. In vitro antioxidant properties and FTIR analysis of Two Seaweeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1: 1. S66-S70.
14.Hifney, A.F., Fawzy, M.A., Abdel-Gawad, K.M., and Gomaa, M. 2016. Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocoll. 54: 77-88.
15.Chang, Y., and McClements, D.J. 2015. Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocoll. 51: 252-260.
16.Cho, S.S., and Dreher, M.L. 2001. eds.: Handbook of Dietary Fiber. Marcel Dekker. New York. USA.
17.Parreidt, T.S., Müller, K., and Schmid, M. 2018. Review: Alginate-Based Edible Films and Coatings forFood Packaging Applications. Foods.7: 170. 1-38.
18.McHugh, D.J. 1987. Production, Properties and Uses of Alginates. In Production and Utilization of Products from Commercial Seaweeds; McHugh, D. J., Ed.; FAO Fish. Tech. Pap.288: 58-115.
19.Pereira-Pacheco, F., Robledo, D., Rodríguez-Carvajal, L., and Pelegrín, F. 2007. Optimization of native agar extraction from Hydropuntia cornea from Yucatan, Mexico. Bioresour. Technol. 98: 1278-1284.
20.Entesarian, M.R., Rezaei, M., Motamedzadegan, A., and Daryaei, A.R. 2016. Study the effect of extraction conditions on textural properties ofagar extracted from cultural alga (Gracilariopsis persica) using RSM. JFST. 50: 13. 103-113. (In Persian)
21.Armisen, R., Galatas, F., and Hispanagar, S.A., 2009. Agar. In: Phillips, G.O., Williams, P.A. (2th edn). A Handbook of hydrocolloids. Cambridge. UK. pp. 82-107.
22.Rudolph, B. 2000. Seaweed Products: Red Algae of Economic Significance. In: Martin, R.E., Carter, E.P., Flick, J.r.G.J., Davis, L.M., (Ed.). Marineand Freshwater Products Handbook.pp. 515-531. A John Wiley & Sons.
23.Marinho-Soriano, E., and Bourret, E. 2003. Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour. Technol. 90: 329-333.
24.Gamal, A.A.E. 2012. Introduction to algae and their importance. In: Kim, Se.K. (Ed.). Handbook of Marine Macro algae: Biotechnology and Applied Phycology. pp. 4-35. A John Wiley & Sons.
25.Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E., Murillo-Álvarez, J.I., Murillo-Álvarez, J., Muñoz-Ochoa, M., and Hernández-Carmona, G. 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. J. Appl. Phycol.20: 515-519.
26.Venugopal, V. 2009. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean. New Delhi: India. CRC Press Taylor & Francis Group, Boca Raton.
27.Haijin, M., Xiaolu, J., and Huashi, G. 2005. Biological activities of a neutral water-soluble agar polysaccharide prepared by agarase degradation. Ocean University of China Qingdao 266003P. R. China.
28.Villanueva, R.D., Sousa, A.M.M., Gonçalves, M.P., Nilsson, M., and Hilliou, L. 2010. Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J. Appl. Phycol. 22: 211-220.
29.Kumar, V., and Fotedar, R. 2009. Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydrate Polymers, 78: 813-819.
30.Necas, J., and Bartosikova, L. 2013. Carrageenan: a review. Vet Med.58: 4. 187-205.
31.Meliani, A.M., Esmkhani, M., and Javanshir, S. 2021. A review on structure, extraction methods and application of Carragenan films and hydrogels. Green Chem. Sus. Techn. J. 2: 2. 41-62. (In Persian)
32.Sedayu, B.B., Cran, M.J., and Bigger, S.W. 2019. A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr. Polym. 216: 287-302.
33.Dong, Y., Wei, Z., and Xue, C. 2021. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci. Technol. 112: 348-361.
34.Vo, T.S., and Kim, S.K. 2013. Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods. 5: 1. 16-27.
35.Alboofetileh, M., Rezaei, M., Tabarsa, M., and You, S. 2019a. Ultrasound‐assisted extraction of sulfated polysaccharide from Nizamuddinia zanardinii: Process optimization, structural characterization, and biological properties. J. Food Process Eng. 42: 2. e12979.
36.Morya, V.K., Kim, J., and Kim, E.K. 2012. Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 93: 71-82.
37.Alboofetileh, M., Rezaei, M., and Tabarsa, M. 2019b. Enzyme-assisted extraction of Nizamuddinia zanardinii for the recovery of sulfated polysaccharides with anticancer and immune-enhancing activities. J. Appl. Phycol. 31: 1391-1402.
38.Bilan, M.I., Grachev, A.A., Shashkov, A.S., Kelly, M., Sanderson, C.J., Nifantiev, N.E., and Usov, A.I. 2010. Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima. Carbohydr. Res. 345: 2038-2047.
39.Alboofetileh, M., Rezaei, M., Tabarsa, M., You, S., Mariatti, F., and Cravotto, G. 2019c. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 128: 244-253.
40.Alboofetileh, M., Rezaei, M.,Tabarsa, M., and You, S. 2019d. Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods. Food Sci. Technol. 56: 3. 1212-1220.
41.Kanazawa, K., Ozaki, y., Hashimoto, T., Das, S.K., Matsushita, S., Hirano, M., Okada, T., Komoto, A., Mori, N., and Nakatsuka, M. 2008. Commercial-scale Preparation of Biofunctional Fucoxanthin from Waste Parts of Brown Sea Algae Laminalia japonica. Food Sci. Technol. Res. 14: 6. 573-582.
42.Mohammadi, M., Mohebi, GH., Bolurian, M., Barmak, A., and Ehsandoust, E. 2020. Identification of bioactive compounds of Cystoseria.sp brown algae extract and evaluation of physicochemical and sensory properties of edible jelly enriched with it. Food Tech. Nutr. 17: 1. 25-38. (In Persian)
43.Shang, Y.F., Kim, S.M., Lee, W.J., and Um, B.H. 2011. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 111: 2. 237-241.
44.Zarei, S., and Hosseinian, H. 2019. Anti-obesity Effects of Fucoxanthin, a Major Marine Carotenoid Isolated from Edible Brown Seaweeds- A Narrative Review. J. Mar. Med. 1: 3. 129-140. (In Persian)
45.Kim, S.M., Jung, Y.J., Kwon, O.N., Cha, K.H., Um, B.H., Chung, D., and Pan, C.H. 2012. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 166: 1843-1855.
46.Quan, J., Kim, S.M., Pan, C.H., and Chung, D. 2013. Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitatebased solid lipid core and fish gelatin–gum arabic coacervate shell. Food Res. Int. 50: 31-37.
47.Higuera-Ciapara, I., Felix-valenzuela, L., and Goycoolea, F.M. 2006. Astaxanthin: A Review of its Chemistry and Applications. Crit Rev Food Sci Nutr. 46: 185-196.
48.Sharayei, P., Azarpazhooh, E., Zomorodi, S., and Einafshar, S. 2021. Optimization of microencapsulation and stability evaluation of astaxanthin-rich shrimp shell extract. Innov. Food Technol. 8: 4. 469-484. (In Persian)
49.Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S.N., McHugh, E., Walsh, D., and Moreira, M.T. 201. Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J. Clean. Prod. 64: 332-344.
50.Yoon, S.O., and Hee-Sook, J. 2014. Role of bioactive food components in diabetes prevention: effects on beta-cell function and preservation. Nutr. Metab. Insights. 7: 51-59.
51.Mendes-Pinto, M., Raposo, M., Bowen, J., Young, A.J., and Morais, R. 2001. Evaluation of different cell disruption process on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bioavailability. J. Appl. Phycol.13: 19-24.
52.Alizadeh, M., Khanjani, M.H., Ansari, R., and Rafieepour, A. 2017. Evaluation of egg vitamins A and E content in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) broodstock affected by different levels of synthetic and natural (Heamatococcus pluvialis) astaxanthin. Iran. J. Fish. Sci. 25: 3. 27-40. (In Persian)
53.Delgado-Vargas, F., and Paredes-Lopez, O. 2003. Natural colorants for food and nutraceutical uses. Boca Raton, FL: CRC Press.
54.Ambati, R.R., Phang, S.M., Ravi, S., and Aswathanarayana, G.R. 2014. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications- A Review. Mar. Drugs. 12: 128-152.
55.Marino, T., Casela, P., Sangiorgio, P., Verardi, A., Ferraro, A., Hristoforou, E., Molino, A., and Musmarra, D. 2020. Natural Beta-Carotene: a Microalgae Derivate for Nutraceutical Applications. Chem. Eng. Trans. 79: 103-108.
56.Ghorbani, Z., Hosseini, M., and Ebrahimi. S. 2017. Accumulation of Beta-carotene in pure microalgae of Dunaliella Salina and the mixed cultures of Caspian Sea under nitrogen starvation. Iran. J. Biosys. Eng.
47: 4. 721-725. (In Persian)
57.Yin, L.J., Chu, B.S., Kobayashi, I., and Nakajima, M. 2009. Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocoll. 23: 1617-1622.
58.Seifzadeh, M., Khanipour, A.A., and Morady, Y. 2016. The evaluation of the quality of beta-carotene derived from Azolla Filiculoides in the Anzali Wetland using the alkaline hydrolysis method in summer. Iran. J. Fish. Sci.25: 5. 75-87. (In Persian)
59.Bashiri, S., Ghanbarzadeh, B., Hamishekar, H., and Dehghannya, J. 2016. Beta-Carotene loaded nanoliposome: effects of gama-oryzanol on particle size stability and encapsulation. Res.Inno. Food Sci. Tech. 4: 4. 365-382.(In Persian)
60.Gul, K., Tak, A., Singh, A.K., Singh, P., Yousuf, B., and Wani, A.A. 2015. Chemistry, encapsulation, and health benefits of β-carotene- A review. Cogent food agric. 1: 1018696.
61.Yilmaz, T., Kumcuoglu, S., and Tavman, S. 2017. Ultrasound assisted extraction of lycopene and β-carotene from tomato processing wastes. Ital. J. Food. Sci. 29: 186-194.
62.Sekar, S., and Chandramohan, M. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol.20: 113-136.
63.Griffiths, M., Harrison, S.T.L., Smit,M., and Maharajh, D. 2016. Major commercial products from micro- and macroalgae. In: Bux, F. and Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. pp. 269-300.
64.Eriksen, N.T. 2008. Production of phycocyanin- a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80: 1-14.
65.Niu, J., Wang, G., Lin, X., and Zhou, B. 2007. Large‐scale recovery ofC‐phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J. Chromatogr. B.850: 267-276.
66.Tsai, H.P., Chuang, L.T., and Chen, C.N.N. 2013. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem. 192: 682-690.
67.Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., and Foubert, I. 2014. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 160: 393-400.
68.Astiasarán, I., and Ansorena, D. 2009. Algal oil. In R. A. Moreau, & A. Kamal-Eldin (Eds.), Gourmet and health-promoting specialty oils (pp. 491-513). Urbana. Illinois. USA: AOACS Press.
69.Miyashita, K., Mikami, N., and Hosokawa, M. 2013. Chemical and nutritional characteristics of brown seaweed lipids: A review. J. Funct. Foods. 5: 4. 1507-1517.
70.Nomura, T., Kikuchi, M., Kubodera, A., and Kawakami, Y. 1997. Proton‐donative antioxidant activity of fucoxanthin with 1, 1‐Diphenyl‐2‐Picrylhydrazyl (DPPH). IUBMB Life. 42: 2. 361-370.
71.Rawdan, S.S. 1991. Sources of c20‐polyunsaturated fatty acids for biotechnological use. Appl. Microbiol. Biotechnol. 35: 421‐430.
72.Radmer, R.J. 1996. Algal diversityand commercial algal products. Biosci. 46: 4. 263-270.
73.Hurdato, A.Q. 2014. Developments in production technology of Kappaphycus in the Phillipines: more than four decades of farming. Paper presented at the 5th Congress of the International Society for Applied Phycology, Australia Technology Park, Sydney,22‐27 June 2014.
74.Pulz, O., and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 6. 635-648.
75.Apt, K.E., and Behrens, P.W. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35: 2. 215-226.
76.Gharekhan, R., Kordjazi, M., Adeli, A., and Adousi, F. 2020. A review on the role of algae bioactive compounds in the cosmetic industry. Journal of Utilization and Cultivation Aquatics. 9: 2. 57-79. (In Persian)
77.Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M., and Baby, A.R. 2017. Cosmetic attributes of algae-A review. Algal Res. 25: 483-487.
78.Spolaore, P., Joannis‐Cassan, C., Duran, E., and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 2. 87-96.
79.Ryu, B., Himaya, S.W.A., and Kim, S.K. 2015. Applications of Microalgae Derived Active Ingredients as Cosmeceuticals. In Handbook of Marine Microalgae. pp. 309-316.
80.Joshi, S., Kumari, R., and Upasani, V.N. 2018. Applications of algae in cosmetics: An overview. Int. J. Innov. Sci. Eng. Tech. 7: 1269-1278.
81.Irkin, L.C. 2019. The use of Macroalgae as a Feed Supplement in Fish Diets. IJTSRD. 3: 5. 2456-6470.
82.Shields, R.J., and Lupatsch, I. 2012. Algae for Aquaculture and Animal Feeds. Technikfolgenabschätzung–Theorie und Praxis, 21: 23-37.
83.Garcia-Vaquero, M., and Haye, M. 2016. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev. Int.32: 1. 15-45.
84.Naidoo, K., Maneveldt, G., Ruck, K., and Bolton, J.J. 2006. A Comparison of Various Seaweed‐Based Diets and Formulated Feed on Growth Rate of Abalone in a Land‐Based Aquaculture System. J. Appl. Phycol. 18: 3‐5. 437-443.
85.Savci, S., 2012. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 3: 1. 77-80.
86.Karthik, T., Sarkar, G., Babu, S. Amalraj, L.D., and Jayasri, M.A. 2020. Preparation and evaluation of liquid fertilizer from Turbinaria ornata and Ulva reticulata. Biocatal. Agric. Biotechnol. 28: 101712.
87.Chbani, A., Mawlawi, H., and Zaouk, L. 2013. Evaluation of brown seaweed (Padina pavonica) as biostimulant of plant growth and development. Afr. J. Agric. Res. 8: 13. 1155-1165.
88.Ramarajan, S., Joseph, L.H., and Ganthi, A.S. 2012. Effect of Seaweed Liquid Fertilizer on the Germination and Pigment Concentration of Soybean. J. Crop Sci. Tech. 1: 2. 1-5.
89.Patel, R.V., Pandya, K.Y., Jasrai, R.T., and Brahmbhatt, N. 2018. Significance of green and brown seaweed liquid fertilizer on seed germination of solanum melongena, solanum lycopersicum and capsicum annum by paper towel and pot method. Int. J. Recent Sci. Res. 9: 2. 24065-24072.
90.Akila, N., and Jeyadoos, T. 2010. The potential of seaweed liquid fertilizer on the growth and antioxidant enhancement of Helianthus annuus L. Orient. J. Chem. 26: 4. 1353-1360.
91.Borazjani, N.J., Tabarsa, M., You, S., and Rezaei, M. 2017. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int. J. Biol. Macromol. 101: 703-711.
92.Bahramzadeh, S., Tabarsa, M., You, S., Li, C., and Bita, S. 2019. Purification, structural analysis and mechanism of murine macrophage cell activation by sulfated polysaccharides from Cystoseira indica. Carbohydr. Polym. 205: 261-270.
93.Khajavi, S., Tabarsa, M., Gavlighi, H.A., and Rezaei, M. 2021. Relationship evaluation of molecular weight and antioxidant and alpha amylase inhibition properties of fucoidan and alginate from brown seaweed Padina pavonica in comparison with polysaccharides from Flixweed and fennel. J. Fish. Sci. Tech. 10: 1. 31-45. (In Persian)
94.Yousefi, M.K., Philizadeh, Y., Eslami, H.R., Mashinchian, A., and Aberoumand, P. 2010. Optimization of extraction of agar from Gracilaria corticata in Persian Gulf. Oceanography. 1: 4. 29-36. (In Persian)
95.Rostami, Z., Tabarsa, M., You, S., and Rezaei, M. 2017. Relationship between molecular weights and biological properties of alginates extracted under different methods from Colpomenia peregrina. Proc. Biochem. 58: 289-297.
96.Roya Abka Khajouei, R.A., Keramat, J., Hamdami, N., Ursu, A., Delattre, C., Laroche, C., Gardarin, C., Lecerf, D., Desbrières, J., Djelveh, G., and Michaud, P. 2018. Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. Int. J. Biol. Macromol.118: 1073-1081.
97.Hasas, M.R. 1996. Investigation of extraction of Kappa and Lambda carrageenans from Chondrus (red algae) on the rocky shores of Ramin Chabahar (November and January). Doctoral dissertation. Central Library of Shahid Beheshti University of Medical Sciences.
98.Rahimi, F., Tabarsa, M., and Rezaei, M. 2016. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. J. Appl. Phycol. 28: 2979-2990.
99.Aghajanpoor, N., Babakhani, A., and Tabarsa, M. 2018. Optimization of the extraction of pigments of Persian Gulf brown algae Sargassum angustifolium using response surface method (RSM). Fishries. 71: 4. 390-400. (In Persian)
100.Tavallaie, S., Rostami, Kh., and Mazaheri Asadi, M. 2019. B-carotene production by native Dunaliella salina strain. JFST. 84: 15. 153-161. (In Persian)
101.Yaztapeh, E.S., Tabatabaei, M.R.H., and Abkenar, A.M. 2021. The compression of antioxidant activity and β-carotene extracted from three species of native algae of Oman Sea (Ulva lactuca, Sargassum ilicifolium and Nizimuddinia zanardini). Iran. Sci. Fish. J. 29: 6. 53-64. (In Persian)
102.Safari, R., Raftani amiri, Z., Esmaeilzadeh Kenari, R. 2018. Evaluation of the effect of temperature, time and pH on stability of phycocyanin extracted from Spirulina platensis. Iranian Scientific Fisheries Journal.
26: 5. 85-93. (In Persian)
103.Jamili, S.H., Gohari, A., Saidnia, S., and Parmeh, P. 2015. Extraction and identification of sterols of Padina boergesenii from the coast of Chabahar. J. Sci. Fish. 24: 3. 35-45. (In Persian)
104.Pishevarzad, F., Hosseini, S.V., Farahmand, H., Lastra, M., and Lopez, S. 2018. Effect of sterols extracted from Persian Gulf red algae on human skin cell collagen. Fisheries. 71: 3. 208-215. (In Persian)
105.Jamili, S.H., Gohari, A.R., Saeidnia, S., Permeh, P., Firoozi, J., Gharanjik, B.M., and Sadrian, M. 2013. Extraction and Identification steroids in two species marine algae, Sargassum oligocystum and Nizamudiinia zanardinii in Persian Gulf and Oman Sea. Iran. Sci. Fish. J. 22: 3. 23-30. (In Persian)
106.Yazdi, M.E., Sheikh-o-eslami, Z., and Sharifi, A. 2018. Improving the quality characteristics of Barbary bread using Spirulina Platensis. JIFST. 2: 69-77.(In Persian)
107.Souzankar, R., Chaichi-Nosrati, A., and Movahhed S. 2018. Enrichment of Coated Wafers by Addition of Micro Algae Arthrospira (Spirulina) Platensis Powder. Iran. J. Nutr. Sci. Food Tech. 13: 2. 51-60. (In Persian)
108.Salimpour Erdi, M., Khoshkhoo, Zh., and Emtiazjoo, M. 2019. The investigation of production of ice cream containing Dunaliella salina alga powder. JFST. 90: 16. 271-282. (In Persian)
109.Asadi Farsani, O., Kordjazi, M., Shabanpour, B., Ojagh, S.M., and Jamshidi, A. The Effect of Antioxidant Properties of Brown Algae (Iyengaria Stellata) Extract on the Shelf-life and Sensory Properties of Rainbow Trout (Oncorhynchus Mykiss)Fillet Nugget during Frozen Storage (-18 °C). (In Persian)
110.Jannat-Alipour, H., Rezaei, M., Shabanpour, B., and Tabarsa, M. 2019. Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: chemical composition and physicochemical properties. J. Appl. Phycol. 31: 4. 2529-2539.
111.Azad Fallah, S., and Kafili, T. 2021. Rheological, textural sensorial and color properties of apple jellies supplemented with Spirulina sp. JFST. 114: 18. 83-94. (In Persian)
112.Mosaddegh, Y., Tavakoli, M., Kamalirousta, L., Khoshkhu, J., and Soltani, M. 2019. Macaroni formulation fortified with potato fiber and Dunaliela salina alga powder and determination of physical, chemical and sensory properties. JFST. 90: 16. 87-90. (In Persian)
113.Poorghasem, H., Babakhani, A., and Rostamzad, H. 2017. Effect of Green Algae, Ulva intestinalis on Antioxidant Activity of Pasta. J. Fish. 70: 3. 309-318.
114.Salehifar, M., Shabazizadeh, S., Darani, K.K., and Bahmadi, H. Investigation of the possibility of enriching industrial cakes using the microalgae Spirulina platensis. Inovation in food science and technology. 5: 3. 39-46. (In Persian)
115.Adeli, A., Toqortapeh, R.G., Kordjazi, M., Ahmad Nasrollahi, S., Shabanpour, B., and Naeimifar, A. 2019. Assessment marketability of algae (Sargassum boveanum) cream and gel moisturizing prototypes. J. Fish. Sci. Tech.8: 4. 209-219. (In Persian)
116.Shokrkar, H., and Ebrahimi, S. 2019. Kinetic Study on Bioethanol production from enzymatic hydrolysates of microalgal biomass. Modares J. Biotech. 10: 1. 61-68. (In Persian)
117.Ghafarizadeh, A., Seyyed nejad, S.M., and Gilani, A. 2018. Studies on the effect of seaweed liquid fertilizer (Nizamuddinia zanardinii) in different levels of urea on some growth parameters and antioxidant activity of seedlings Triticum aestivum cv. 'Chamran2'. Applied Biology. 1: 5. 207-227. (In Persian)
118.Kabirifard, A., Dashtizadeh, M., Kamali, A.A., and Khaj, H. 2019. Comparison of nutritional value of Sargassum angustifolium on the coasts of Bushehr province with Cystocira indica on the coasts of Sistanand Baluchestan province for
ruminant feeding. Journal of Animal Environmental. 11: 3. 35-44. (In Persian)
119.Sharifi, O.V., Yaghoubfar, A., Sharifi, S.D., Mirzadeh, Gh., and Askari, F. 2012. Investigation of the possibility of using Gracylariopsis Persica in feeding laying hens. Animal production.14: 1. 1-10. (In Persian)
120.Morshedi, V., Tamadoni, R., and Sarraf, M. 2022. An overview of the importance of macroalgae in the aquaculture industry (with an emphasis on fish). Iranian Journal of Biology.5: 10. 117-124. (In Persian)