استفاده از نانومواد TiO2 و TiO2@SBA-15 جهت تخریب فتوکاتالیستی مالاشیت سبز

نوع مقاله: مقاله علمی - پژوهشی

نویسندگان

1 دانشگاه صنعتی خاتم الانبیاء(ص) بهبهان دانشکده ی منابع طبیعی گروه محیط زیست

2 دانشگاه صنعتی خاتم الانبیاء ص بهبهان

3 دانشگاه صنعتی خاتم الانبیاء ص بهبهان دانشکده ی منابع طبیعی گروه شیلات

4 دانشگاه صنعتی خاتم الانبیاء ص بهبهان دانشکده ی منابع طبیعی گروه محیط زیست

5 دانشگاه تربیت مدرس

چکیده

مالاشیت سبز به عنوان یک ترکیب قارچ‌کش، باکتری‌کش و انگل‌کش در صنعت آبزی‌پروری استفاده می‌شود که علاوه بر مضر بودن برای آبزیان، با وارد شدن به محیط زیست نیز به عنوان یک آلاینده محسوب می شود. در این تحقیق، از نانوفتوکاتالیست های TiO2و TiO2@SBA-15 برای تخریب کار آمد مالاشیت سبز استفاده شد. این جاذب ها نسبت به محیط زیست سازگار، و عملکرد بالایی در بین نانوجاذب‌ها دارند. نانوفتوکاتالیست های استفاده شده با تخریب مالاشیت سبز به عنوان یک آلاینده آلی تحت تابش نور فرابنفش مورد بررسی قرار گرفتند. اثر پارامترهای مختلف از جمله دوز جاذب(40، 100، 200، 400)، زمان تماس(240 دقیقه)، pH اولیه ی محلول(4، 7، 10) و غلظت اولیه ی محلول (10، 20، 30) تحت سیستم جذب ناپیوسته مورد بررسی قرار گرفتند. نتایج نشان داد شرایط بهینه شامل درصد حذفTiO2@SBA-15 (98 درصد) بر طبق غلظت اولیه 10 میلی گرم بر لیتر، دوز جاذب 200 میلی گرم بر لیتر و محلول pH=10 بود. نانو ذرات TiO2@SBA-15 با میزان حذف ۹۸ درصد در ۹۰ دقیقه عملکرد بهتری نسبت به نانو ذرات TiO2 با میزان حذف ۶۰ درصد در ۲۴۰دقیقه داشتند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Using of nanomaterial’s TiO2 and TiO2@SBA-15 for photo catalytic degradation of malachite green

نویسندگان [English]

  • amir zeidi 1
  • reza alizadeh 2
  • maryam rezaie shadegan 3
  • navid zamani 4
  • mitra cheraghi 5

چکیده [English]

Malachite green is used as a fungicide, bactericide and parasitic ide in the aquaculture industry, which is influenced on the environment as a pollutant .In this study, the using nano-photocatalysts TiO2@SBA-15 and TiO2 they were developed for efficient photodegradation of malachite green. This Absorbents is Eco-friendly And the have high performance in between of the nano-adsorbents. The used nano-photocatalysts was evaluated by the decomposition of malachite green as a model organic pollutant under UV light irradiation. Effects of various process parameters including adsorbent dosage (40, 100, 200, 400), contact time (240 min), initial pH (4, 7, 10) of the solution and initial Malachite green concentration (10, 20, 30) were investigated under batch adsorption system. The results showed that the optimal conditions of removal percentage of TiO2@SBA-15 (98%) accrued at initial concentration of 10 mg/l, adsorbent dosage of 200 mg/l and solution pH of 10. the TiO2@SBA-15 nanoparticles removal rate of 98% in 90 minutes performed better than the TiO2 nanoparticles removal rate of 60% in 240 minutes.

کلیدواژه‌ها [English]

  • removal
  • dye pollution's
  • ultra violet
1. Akyol A., Yatmaz H., Bayramoglu M., 2004. Photocatalytic decolorization of Remazol RedRR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 54(1): 19-24.
2. Asadi, A., Nateghi, R., Naseri, S., Mohammadian, M., Mohammadi, H., Bonyadinejad, G.R.,2012. Direct poly azo dye decolorization using nanophotocatalytic uv/nio process .
3. Baek, M.-H., Ijagbemi, C.O., Se-Jin, O., and Kim, D.-S., 2010. Removal of Malachite Green from aqueous solution using degreased coffee bean. Journal of Hazardous Materials, 176(1),820-828.
4. Bilandžić, N., Varenina, I., Kolanović, B.S., Oraić, D., and Zrnčić, S. 2012. Malachite green
residues in farmed fish in Croatia. Food Control, 26(2): 393-396.
5. Bayat, B.K.R., Ebrahimi, M., and Keyvani, B. 2013. Removal of acid red 206 dye in
pollutant water by 2znfeo4/bentonite as a nanophotocatalyst in batch reactor using taguachi method.
6. Chen, C., Lu, C., Chung, Y., and Jan, J. 2007. UV light induced photodegradation of malachite green on TiO 2 nanoparticles. Journal of hazardous materials, 141(3): 520-528.
7. Chen, H., Zhao, J., Wu, J., and Dai, G. 2011. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae.Journal of hazardous materials, 192(1): 246-254.
8. Crini, G., and Badot, P.-M. 2008. Application of chitosan, a natural aminopolysaccharide,
for dye removal from aqueous solutions by adsorption processes using batch studies: a
review of recent literature. Progress in polymer science, 33(4): 399-447.
9. Daneshvar, N., Salari, D., and Khataee, A. 2004. Photocatalytic degradation of azo dye acid
red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of photochemistry and
photobiology A: chemistry, 162(2): 317-322.
10.Daniel, C. 1973. One-at-a-time plans. Journal of the American statistical association, 68
(342): 353-360.
11.Del Río, A., Fernández, J., Molina, J., Bonastre, J., and Cases, F. 2011. Electrochemical
treatment of a synthetic wastewater containing a sulphonated azo dye. Determination of
naphthalenesulphonic compounds produced as main by-products. Desalination, 273(2): 428-
435.
12.Fallah, A.A., and Barani, A. 2014. Determination of malachite green residues in farmed
rainbow trout in Iran. Food control, 100-105, 40.
13.Gaya, U.I., Abdullah, A.H., Zainal, Z., and Hussein, M.Z. 2009 .Photocatalytic treatment of
4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and
inorganic anions. Journal of hazardous materials, 168(1): 57-63.
14.Ghaneian, M.T., Jamshidi, B., Amrollahi, M., Dehvari, M., and Taghavi, M. 2014.
Application of biosorption process by pomegranate seed powder in the removal of
hexavalent chromium fromaqueous environment. Koomesh, 15(2): 206-211.
15.Gholami, M., Nassehinia, H.R., Jonidi-Jafari, A., Nasseri, S., and Esrafili, A. 2014.
Comparison of Benzene and Toluene removal from synthetic polluted air with use of Nano
photocatalytic TiO2/ZNO process. Journal of Environmental Health Science and
Engineering, 12(1): 45.
16.Goncalves, M.S., Oliveira-Campos, A.M., Pinto, E.M., Plasencia, P.M., Queiroz, M.J.R.,
1999. Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere,
39(5): 781-786.
17.Hashimoto, J.C., Paschoal, J.A., Queiroz, S.C., Ferracini, V.L., Assalin, M.R., and Reyes,
F.G. 2012. A simple method for the determination of malachite green and leucomalachite
green residues in fish by a modified QuEChERS extraction and LC/MS/MS. Journal of
AOAC International, 95(3): 913-922.
18.Huang Y. 2009. Functionalization of mesoporous silica nanoparticles and their applications
in organo-, metallic and organometallic catalysis.
19.Karim, A., Jalil, A., Triwahyono, S., Sidik, S., Kamarudin, N., Jusoh, R., Jusoh, N., Hameed,
B. 2012. Amino modified mesostructured silica nanoparticles for efficient adsorption of
methylene blue. Journal of colloid and interface science, 386(1): 307-314.
20.Konstantinou, I.K., and Albanis, T.A. 2004. TiO2-assisted photocatalytic degradation of azo
dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis
B: Environmental, 49(1): 1-14.
21.Landau, M., Vradman, L., Wang, X., and Titelman, L. 2005. High loading TiO2 and ZrO2
nanocrystals ensembles inside the mesopores of SBA-15: preparation, texture and stability.
Microporous and mesoporous materials, 78(2): 117-129.
22.Laokiat, L., Khemthong, P., Grisdanurak, N., Sreearunothai, P., Pattanasiriwisawa, W., and
Klysubun, W. 2012. Photocatalytic degradation of benzene, toluene, ethylbenzene, and
xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass
cloth. Korean Journal of Chemical Engineering, 29(3): 377-383.
23.Lee, J.B., Yun Kim, H., Mi Jang, Y., Young Song, J., Min Woo, S., Sun Park, M., Sook Lee,
H., Kyu Lee, S., and Kim, M. 2010. Determination of malachite green and crystal violet in
processed fish products. Food Additives and Contaminants, 27(7): 953-961.
24.López-Muñoz, M.-J., Van Grieken, R., Aguado, J., and Marugán, J. 2005. Role of the
support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15
photocatalysts. Catalysis Today, 101(3): 307-314.
25.Mahmoudi, N., Rayat, T.K., Borhani, S., Arami, M., and Nourmohammadian, F. 2008.
Decolorization of colored wastewater containing azo acid dye using photo-fenton process:
Operational parameters and a comparative study.
26.Masschelein, W.J., and Rice R.G. 2016. Ultraviolet light in water and wastewater sanitation.
CRC press.
27.Muruganandham, M., Shobana, N., and Swaminathan, M. 2006. Optimization of solar
photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2.
Journal of Molecular Catalysis A: Chemical, 246(1): 154-161.
28.Parshetti, G., Kalme, S., Saratale, G., and Govindwar, S. 2006. Biodegradation of malachite
green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53(4): 492.
29.Pérez-Estrada, L., Agüera, A., Hernando, M., Malato, S., Fernández-Alba, A. 2008.
Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity
of the transformation products. Chemosphere, 70(11): 2068-2075.
30.Singh, G., Koerner, T., Gelinas, J.-M., Abbott, M., Brady, B., Huet, A.-C., Charlier, C.,
Delahaut, P., Benrejeb Godefroy, S. 2011. Design and characterization of a direct ELISA for
the detection and quantification of leucomalachite green. Food Additives and Contaminants,
28(6): 731-739.
31.Yong, L., Zhanqi, G., Yuefei, J., Xiaobin, H., Cheng, S., Shaogui, Y., Lianhong, W.,
Qingeng, W., and Die, F. 2015. Photodegradation of malachite green under simulated and
natural irradiation: kinetics, products, and pathways. Journal of Hazardous Materials, 127-
136, 285.
32.Zhao, L., Qin, H., Wu, R. a., and Zou, H. 2012. Recent advances of mesoporous materials in
sample preparation. Journal of Chromatography A, 1228, 193-204.
33.Zhao, S., Su, D., Che, J., Jiang, B., and Orlov, A. 2011. Photocatalytic properties of TiO2
supported on SBA-15 mesoporous materials with large pores and short channels. Materials
Letters, 65(23): 3354-3357.