A review on the aquatics species distribution modelling and its most important methods

Document Type : scientific research article

Authors

1 Dept. of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Corresponding Author, Dept. of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

3 Dept. of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran

Abstract

Proper recognition of species distribution patterns in aquatic ecosystems and their spatial and temporal changes during the past, and predictions for the future is one of the essential compartments of ecosystem-based fisheries management for aquatics stocks. Over the last decades, innovation and usage of different statistical and classification techniques in species distribution studies have been of high importance. Using modelling approaches has provided critical information for fisheries managers in understanding the impacts of changes in environmental conditions on fluctuations in aquatics populations and finding latent probable relationships between them and the most influencing environmental factors. The present study comprehensively reviewed the basics of species distribution modelling and its usage in fisheries assessment of aquatic species populations. Based on the conducted studies, the most important related developed modelling techniques under their methodological frameworks and their advantages and disadvantages for fisheries distribution modelling analysis are described. The presented topics could improve generally available knowledge about the practical incorporation of different species distribution modelling especially with fisheries importance.

Keywords

Main Subjects


1.Giannoulaki, M., Iglesias, M., Tugores, M. P., Bonanno, A., Patti, B., De Felice, A., Leonori, I., Bigot, J. L., Tičina, V., Pyrounaki, M. M., & Tsagarakis, K. (2013). Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages. Fisheries Oceanography. 22 (2).
2.Olsen, Z. (2019). Quantifying nursery habitat function: variation in habitat suitability linked to mortality and growth for juvenile Black Drum in a hypersaline estuary. Marine and Coastal Fisheries. 11(1), 86-96.
3.Mengerink, K. J., Van Dover, C. L., Ardron, J., Baker, M., Escobar-Briones, E., Gjerde, K., Koslow, J. A., Ramirez-Llodra, E., Lara-Lopez, A., Squires, D., & Sutton, T. (2014). A call for deep-ocean stewardship. Science. 344(6185), 696-698.
4.Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I., & Consalvey, M. (2012). Science priorities for seamounts: research links to conservation and management. PloS one. 7(1), p.e29232.
5.O'Leary, B. C., Brown, R. L., Johnson, D. E., Von Nordheim, H., Ardron, J., Packeiser, T., & Roberts, C. M. (2012). The first network of marine protected areas (MPAs) in the high seas: the process, the challenges and where next. Marine Policy. 36(3), 598-605.
6.Parra, H. E., Pham, C. K., Menezes, G. M., Rosa, A., Tempera, F., & Morato, T. (2017). Predictive modeling of deep-sea fish distribution in the Azores. Deep Sea Research Part II: Topical Studies in Oceanography. 145, 49-60.
7.Schismenou, E., Tsoukali, S., Giannoulaki, M., & Somarakis, S. (2017). Modelling small pelagic fish potential spawning habitats: eggs vs spawners and in situ vs satellite data. Hydrobiologia. 788(1), 17-32.
8.Maravelias, C. D., Tsitsika, E. V., & Papaconstantinou, C. (2007). Seasonal dynamics, environmental preferences and habitat selection of John Dory (Zeus faber). Estuarine, Coastal and Shelf Science. 72(4), 703-710.
9.Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological modelling. 135(2-3), 147-186.
10.Su, N. J., Chang, C. H., Hu, Y. T., Chiang, W. C., & Tseng, C. T. (2020). Modeling the spatial distribution of swordfish (Xiphias gladius) using fishery and remote sensing data: approach and resolution. Remote Sensing. 12(6), p.947.
11.Zwolinski, J. P., Emmett, R. L., & Demer, D. A. (2011). Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES Journal of marine Science. 68(5), 867-879.
12.Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., & Van Dover, C. L. (2011). Man and the last great wilderness: human impact on the deep sea. PLoS one. 6(8), p.e22588.
13.Tian, S., Chen, X., Chen, Y., Xu, L., & Dai, X. (2009). Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fisheries Research. 95(2-3), 181-188.
14.Moëzzi, F., Poorbagher, H., Eagderi, S., & Feghhi, J. (2024). Time series modelling for the Caspian Kutum (Rutilus frisii) catch using SARIMA model. Environmental Sciences, 22(2), In press. [In Persian]
15.Geronimo, R. C., Franklin, E. C., Brainard, R. E., Elvidge, C. D., Santos, M. D., Venegas, R., & Mora, C. (2018). Mapping fishing activities and suitable fishing grounds using nighttime satellite images and maximum entropy modelling. Remote Sensing. 10(10), p.1604.
16.Liu, X., Wang, J., Zhang, Y., Yu, H., Xu, B., Zhang, C., Ren, Y., & Xue, Y. (2019). Comparison between two GAMs in quantifying the spatial distribution of Hexagrammos otakii in Haizhou Bay, China. Fisheries Research. 218, 209-217.
17.Chang, Y. J., Sun, C. L., Chen, Y., Yeh, S. Z., & Dinardo, G. (2012). Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean. International Journal of Remote Sensing. 33(23), 7523-7541.
18.Vinagre, C., Fonseca, V., Cabral, H., & Costa, M. J. (2006). Habitat suitability index models for the juvenile soles, Solea solea and Solea senegalensis, in the Tagus estuary: defining variables for species management. Fisheries research. 82(1-3), 140-149.
19.Moëzzi, F., Poorbagher, H., Eagderi, S., Feghhi, J., Dormann, C. F., Khorshidi Nergi, S., & Amiri, K. (2022). Modelling habitat preference of Caspian Kutum, Rutilus Kutum, using non-linear habitat suitability indices and generalised additive models. Regional Studies in Marine Science, 102715.   
20.Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., & Martin, T. G. (2013). Predicting species distributions for conservation decisions. Ecology letters. 16(12), 1424-1435.
21.Zhang, Z., Mammola, S., Xian, W., & Zhang, H. (2020). Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Diversity and Distributions. 26(1), 126-137.
22.Gormley, A. M., Forsyth, D. M., Griffioen, P., Lindeman, M., Ramsey, D. S., Scroggie, M. P., & Woodford, L. (2011). Using presence‐only and presence–absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology. 48(1), 25-34.
23.Robinson, C. L., Proudfoot, B., Rooper, C. N., & Bertram, D. F. (2021). Comparison of spatial distribution models to predict subtidal burying habitat of the forage fish Ammodytes personatus in the Strait of Georgia, British Columbia, Canada. Aquatic Conservation: Marine and Freshwater Ecosystems. 31(10), 2855-2869.
24.Li, G., Cao, J., Zou, X., Chen, X., & Runnebaum, J. (2016). Modeling habitat suitability index for Chilean jack mackerel (Trachurus murphyi) in the South East Pacific. Fisheries Research. 178, 47-60.
25.Olden, J. D., Jackson, D. A., & Peres‐Neto, P. R. (2002). Predictive models of fish species distributions: a note on proper validation and chance predictions. Transactions of the American Fisheries Society. 131(2), 329-336.
26.Heggenes, J. A. N. (1996). Habitat selection by brown trout (Salmo trutta) and young Atlantic salmon (S. salar) in streams: static and dynamic hydraulic modelling. Regulated Rivers: Research & Management. 12(2‐3), 155-169.
27.sFausch, K. D., Hawkes, C. L., & Parsons, M. G. (1988). Models that predict standing crop of stream fish from habitat variables: 1950-85. Gen. Tech. Rep. PNW-GTR-213. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 52 p, 213.
28.Costa, T. L., Pennino, M. G., & Mendes, L. F. (2017). Identifying ecological barriers in marine environment: The case study of Dasyatis marianae. Marine environmental research. 125, 1-9.
29.Martínez-Minaya, J., Cameletti, M., Conesa, D., & Pennino, M. G. (2018). Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stochastic environmental research and risk assessment. 32(11), 3227-3244.
30.Moore, C., Drazen, J. C., Radford, B. T., Kelley, C., & Newman, S. J. (2016). Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Marine Policy. 69, 32-41.
31.Zimmermann, N. E., Edwards, T. C., Graham, C. H., Pearman, P. B., & Svenning, J. C. (2010). New trends in species distribution modelling. Ecography. 33, 985-989.
32.Colloca, F., Bartolino, V., Lasinio, G. J., Maiorano, L., Sartor, P., & Ardizzone, G. (2009). Identifying fish nurseries using density and persistence measures. Marine Ecology Progress Series.381, 287-296.
33.Beger, M., & Possingham, H. P. (2008). Environmental factors that influence the distribution of coral reef fishes: modeling occurrence data for broad-scale conservation and management. Marine Ecology Progress Series.
361, 1-13.
34.Purkis, S. J., Graham, N. A. J., & Riegl, B. M. (2008). Predictability of reef fish diversity and abundance using
remote sensing data in Diego Garcia (Chagos Archipelago). Coral reefs. 27(1), 167-178.
35.Pittman, S. J., Christensen, J. D., Caldow, C., Menza, C., & Monaco, M. E. (2007). Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecological modelling. 204(1-2), 9-21.
36.Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions. 17(1), 43-57.
37.Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and distributions. 14(5), 763-773.
38.Efron, B., & Hastie, T. (2016). Computer Age Statistical Inference. Cambridge University Press, Cambridge, UK.
39.Moëzzi, F., Poorbagher, H., Eagderi, H., Feghhi, J. (2020). Spatiotemporal prediction of chlorophyll-a concentration in the Caspian Sea using logistic regression and Markov chain. Environmental Resources Research, 8(2), 175-186.
40.Elith, J., & Graham, C. H. (2009). Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 32(1), 66-77.
41.Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence‐absence versus presence‐only modelling methods for predicting bird habitat suitability. Ecography. 27(4), 437-448.
42.Moëzzi, F., Poorbagher, H., Eagderi, S., & Feghhi, J. (2023). Comparing the performance of generalised linear model (GLM) and random forest (RF) models in predicting catch distribution of Caspian Kutum (Rutilus frisii). Journal of Fisheries, 76(1), 27-38. [In Persian]
43.Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and distributions. 15(1), 59-69.
44.Morán‐Ordóñez, A., Lahoz‐Monfort, J. J., Elith, J., & Wintle, B. A. (2016). Evaluating 318 continental‐scale species distribution models over a 60‐year prediction horizon: what factors influence the reliability of predictions?. Global Ecology and Biogeography. 26(3), 371-384.
45.Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., & Münkemüller, T. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36(1), 27-46.
46.Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecological monographs. 77(4), 615-630.
47.Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., & Muys, B. (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological modelling. 221(8), 1119-1130.
48.Bučas, M., Bergström, U., Downie, A.L., Sundblad, G., Gullström, M., Von Numers, M., Šiaulys, A., & Lindegarth, M. (2013). Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: evaluating the scope for predictive mapping using different modelling approaches. ICES Journal of Marine Science. 70(6), 1233-1243.
49.Moëzzi, F., Poorbagher, H., & Eagderi, H. (2018). Evaluating effects of model type and importance of habitat parameters on prediction of biodiversity indices (a case study with fishes of the Totkabon River in the southern Caspian Sea). Journal of Fisheries, 71(3), 225-235.
50.Poorbagher, H., Eagderi, S., & Moëzzi, F. (2023). Comparison of the performance of the linear and non-linear models in habitat suitability estimation (case study: Razi scraper, Capoeta razii). Journal of Natural Environment, Published online. [In Persian]
51.Zhang, Y., Xu, B., Ji, Y., Zhang, C., Ren, Y., & Xue, Y. (2021). Comparison of habitat models in quantifying the spatio-temporal distribution of small yellow croaker (Larimichthys polyactis) in Haizhou Bay, China. Estuarine, Coastal and Shelf Science. 261, p.107512.
52.Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and evolution. 6(16), 5973-5986.
53.Ward, E. J., Jannot, J. E., Lee, Y. W., Ono, K., Shelton, A. O., & Thorson, J. T. (2015). Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co‐occurrence. Ecological Applications. 25(8), 2198-2209.
54.Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E., & Lundquist, C. J. (2017). A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Frontiers in Marine Science. 4, p.421.
55.Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology letters. 8(9), 993-1009.
56.Wootton, J. T. (1992). Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology. 73(3), 981-991.
57.Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 66(3), 247-259.
58.Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography. 12(5), 361-371.
59.Li, M., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2017). Evaluating the approaches of habitat suitability modelling for whites potted conger (Conger myriaster). Fisheries Research. 195, 230-237.
60.Beecher, H. A., Caldwell, B. A., & DeMond, S. B. (2002). Evaluation of depth and velocity preferences of juvenile coho salmon in Washington streams. North American Journal of Fisheries Management. 22(3), 785-795.
61.Vadas Jr, R. L., & Orth, D. J. (2001). Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Transactions of the American Fisheries Society. 130(2), 217-235.
62.Chen, X., Tian, S., Chen, Y., & Liu, B. (2010). A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommostrephes bartramii) in the Northwest Pacific Ocean. Fishery Bulletin. 108(1).
63.Wang, D., Yu, J., Lin, Z., & Chen, P. (2023). Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model. Biology, 12(4), p.603.
64.Brown, S. K., Buja, K. R., Jury, S. H., Monaco, M. E., & Banner, A. (2000). Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management. 20(2), 408-435.
65.Bovee, K. D. (1986). Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology (No. 21). National Ecology Center, Division of Wildlife and Contaminant Research, Fish and Wildlife Service, US Department of the Interior.
66.Korman, J., Perrin, C. J., & Lekstrum, T. (1994). A guide for the selection of standard methods for quantifying sportfish habitat capability and suitability in streams and lakes of British Columbia. Limnotek Research and Development Inc., Vancouver, for British Columbia Environment, Fisheries Branch. Research and Development Section, Vancouver.
67.Jowett, I. G. (2003). Hydraulic constraints on habitat suitability for benthic invertebrates in gravel‐bed rivers. River Research and Application. 19(5‐6), 495-507.
68.Leclerc, M., Saint-Hilaire, A., & Bechara, J. (2003). State-of-the-art and perspectives of habitat modelling for determining conservation flows. Canadian Water Resources Journal. 28(2), 135-151.
69.Nykänen, M., Huusko, A., & Mäki‐Petäys, A. (2001). Seasonal changes in the habitat use and movements of adult European grayling in a large subarctic river. Journal of Fish Biology.58(2), 506-519.
70.Xu, F., Du, Y. A., Chen, H., & Zhu, J. M. (2021). Prediction of fish migration caused by ocean warming based on SARIMA model. Complexity, 2021.
71.Potts, J. M., & Elith, J. (2006). Comparing species abundance models. Ecological modelling. 199(2), 153-163.
72.Breiman, L. (2001). Random forests. Machine Learning. 45, 5-32.
73.Tyler, E. H., Speight, M. R., Henderson, P., & Manica, A. (2009). Evidence for a depth refuge effect in artisanal coral
reef fisheries. Biological Conservation. 142(3), 652-667.
74.Moisen, G. G., & Frescino, T. S. (2002). Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling. 157(2-3), 209-225.
75.McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge, New York. P 532.
76.Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences. John Wiley & Sons.
77.Ahmadi‐Nedushan, B., St‐Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N., & Bobée, B. (2006). A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications. 22(5), 503-523.
78.Sguotti, C., Lynam, C. P., García‐Carreras, B., Ellis, J. R., & Engelhard, G. H. (2016). Distribution of skates and sharks in the North Sea: 112 years of change. Global change biology. 22(8), 2729-2743.
79.Campbell, R. A. (2015). Constructing stock abundance indices from catch and effort data: Some nuts and bolts. Fisheries Research. 161, 109-130.
80.Hart, R. A. (2012). Stock assessment of brown shrimp (Farfantepenaeus aztecus) in the US Gulf of Mexico for 2011. NOAA technical memorandum NMFS-SEFSC; 638.
81.Li, Z., Ye, Z., Wan, R., & Zhang, C. (2015). Model selection between traditional and popular methods for standardizing catch rates of target species: a case study of Japanese Spanish mackerel in the gillnet fishery. Fisheries Research. 161, 312-319.
82.Lehmann, A., Overton, J. M., & Leathwick, J. R. (2002). GRASP: generalized regression analysis and spatial prediction. Ecological Modelling. 157(2-3), 189-207.
83.Knudby, A., Brenning, A., & LeDrew, E. (2010). New approaches to modelling fish–habitat relationships. Ecological Modelling. 221(3), 503-511.
84.Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC Press Taylor and Francis Group.
85.Leathwick, J. R., Elith, J., Francis,
M. P., Hastie, T., & Taylor, P. (2006). Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series. 321, 267-281.
86.Rezaei, R., & Sengül, H. (2018). Development of generalized additive models (GAMs) for Salmo rizeensis endemic to north-eastern streams of Turkey. Turkish Journal of Fisheries and Aquatic Sciences. 19(1), 29-39.
87.Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R., & Kitakado, T. (2009). Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. ICES Journal of Marine Science. 66(6), 1417-1424.
88.Drexler, M., & Ainsworth, C. H. (2013). Generalized additive models used to predict species abundance in the Gulf of Mexico: an ecosystem modeling tool. PloS one. 8(5), p.e64458.
89.Grüss, A., Chagaris, D. D., Babcock, E. A., & Tarnecki, J. H. (2018). Assisting ecosystem‐based fisheries management efforts using a comprehensive survey database, a large environmental database, and generalized additive models. Marine and Coastal Fisheries. 10(1), 40-70.
90.Lauzeral, C., Grenouillet, G., & Brosse, S. (2013). Spatial range shape drives the grain size effects in species distribution models. Ecography. 36(7), 778-787.
91.Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology. 16(4), 1145-1157.
92.Hastie, T., & Tibshirani, R. (1990) Generalized Additive Models. London: Chapman and Hall, 335 p.
93.Gobeyn, S., Mouton, A. M., Cord, A. F., Kaim, A., Volk, M., & Goethals, P. L. (2019). Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecological Modelling. 392, 179-195.
94.Thessen, A. (2016). Adoption of machine learning techniques in ecology and earth science. One Ecosystem.1, p.e8621.
95.Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of animal ecology. 77(4), 802-813.
96.Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology. 83(2), 171-193.
97.Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology. 88(11), 2783-2792.
98.Oppel, S., Strobl, C., & Huettmann, F. (2009). Alternative methods to quantify variable importance in ecology. Ludwig-Maximilians-Universität, München, 1-7.
99.Kuhn, M., & Johnson, K. (2013). Applied predictive modelling. Springer. New York.
100.Halsey, L. G. (2019). The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biology letters. 15(5), p.20190174.
101.Pittman, S. J., & Brown, K. A. (2011). Multi-scale approach for predicting fish species distributions across coral reef seascapes. PloS one.6(5), p.e20583.
102.Hua, C., Li, F., Zhu, Q., Zhu, G., & Meng, L. (2020). Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fisheries Research. 221, p.105408.
103.Xue, Y., Guan, L., Tanaka, K., Li, Z., Chen, Y., & Ren, Y. (2017). Evaluating effects of rescaling and weighting data on habitat suitability modeling. Fisheries Research. 188, 84-94.
104.Froeschke, J. T., & Froeschke, B. F. (2011). Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fisheries Research. 111(3), 131-138.
105.Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.
106.Dai, L., Hodgdon, C., Tian, S., Chen, J., Gao, C., Han, D., Kindong, R., Ma, Q., & Wang, X. (2020). Comparative performance of modelling approaches for predicting fish species richness in the Yangtze River Estuary.
Regional Studies in Marine Science. 35, p.101161.
107.França, S., & Cabral, H. N. (2015). Predicting fish species richness in estuaries: which modelling technique to use?. Environmental Modelling & Software. 66, 17-26.
108.McKenney, D. W., & Pedlar, J. H. (2003). Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. Forest Ecology and Management. 175(1-3), 497-507.
109.Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics. 1189-1232.
110.Hastie, T., Tibshirani, R., & Friedman, J. H. (2001) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York.
111.Froeschke, J. T., & Froeschke, B. F. (2016). Two-stage boosted regression tree model to characterize southern flounder distribution in Texas estuaries at varying population sizes. Marine and coastal fisheries. 8(1), 222-231.
112.Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29(2), 129-151.
113.Díaz-Uriarte, R., & Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC bioinformatics. 7(1), 1-13.
114.Siroky, D. S. (2009). Navigating random forests and related advances in algorithmic modeling. Statistics Surveys. 3, 147-163.
115.Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news. 2(3), 18-22.
116.Olaya-Marín, E. J., Martínez-Capel, F., & Vezza, P. (2013). A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers. Knowledge and Management of Aquatic Ecosystems, (409), p.07.
117.Moguerza, J. M., & Muñoz, A. (2006). Support vector machines with applications. Statistical Science.21(3), 322-336.
118.Vapnik, V. (1995). The nature of statistical learning theory. In: Information science and statistics. Springer-Verlag, New York, NY (USA).
119.Pinser, D. A., & Schnyer, D. M. (2020). Support vector machine. In: Machine learning (pp. 101-121). Academic Press.
120.Munoz-Mas, R., Fukuda, S., Pórtoles, J., & Martinez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics. 43, 24-37.
121.Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining, Practical Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, San Francisco, p. 629.