Assessment of acute toxicity of Potassium Dichromate on Artemia Urmiana and Artemia franciscana in different salinities

Document Type : scientific research article

Authors

1 Corresponding Author, Ph.D. Student of Environmental Engineering, Kish International Campus, Tehran University, Tehran, Iran.

2 Professor, Faculty of Environment, University of Tehran, Tehran University, Tehran, Iran.

3 Assistant Prof., Faculty of Environment, University of Tehran, Tehran University, Tehran, Iran.

Abstract

Considering the role of potassium dichromate in toxicology studies as a reference substance and the lack of information about this substance for Artemia urmiana, the present research aims to provide basic information about the toxicity of this reference substance. Two species of Artemia urmiana and Artemia franciscana were used in this research. 10 nauplii of instar II of Artemia urmiana and Artemia franciscana were exposed to different concentrations of potassium dichromate (100, 60, 40, 20, 10, 5) and (160, 140, 100, 80, 60, 40, 20) repectively for 24 hours. LC50, LOEC and NOEC values for Artemia franciscana and Artemia urmiana species were 23, 20, 10 and 69, 40, 20 mg/L at salinity of 35 g/L, respectively. Also, the effect of salinity on toxicity of this substance in two Artemia species was investigated. The results of this research showed that with the increase in salinity, the resistance of both Artemia species to potassium dichromate toxicity increased. Besides, resistance of A. urmiana species to potassium dichromate was significantly higher than A. franciscana species at both salinity levels.

Keywords

Main Subjects


1.Yu, J., & Lu, Y. (2018). Artemia spp. Model - A Well-Established Method for Rapidly Assessing the Toxicity on an Environmental Perspective. Medical Research Archives, 6 (2).
2.International Organization for Standardization (ISO). (1996a). Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test. ISO 6341. ISO. Paris.
3.Vanhaecke, P., Persoone, G., Claus, C., & Sorgeloos, P. (1980). Research on the development of a short-term standard toxicity test with Artemia nauplii.
4.Agh, N., Bossier, P., T. J. A., Beardmore, J., Mohammadyari, A. G. V., & Sorgeloos, P. (2009). Morphometric and preliminary genetic characteristics of Artemia populations from Iran. Journal of international review of Hydrobiology,94, 194-207.
5.Artoxkit, M. (2014). Artemia Toxicity Screening Test for Estuarine and Marine Waters. Standard Operational Procedure. In. Microbiotests, Mariakerke-Gent, Belgium.
6.Johari, S. A., Ghazi-Khansari, M., Eslamipour, E., Pouypouy, H., Hejazi, M., Koohi, M. K., Seifi, M., Sheikhzadeh, N., & Menhaje, R. (2020). Nanotechnologies - Aquatic toxicity assessment of manufactured nanomaterials in saltwater lakes using Artemia sp. Nauplii. [In Persian]
7.Baniamam, M. (2014). Determination of Lethal Concentration (LC50) Values of Vanadium and Toxicity Effect on the Growth of Artemia urmiana and A. franciscana. Survey in Fisheries Sciences, 1 (1), 1-8.
8.Mohiseni, M., Farhangi, M., Agh, N., Mirvaghefi, A., & Talebi, K. (2017). Toxicity and Bioconcentration of Cadmium and Copper in Artemia Urmiana Nauplii. Iranian Journal of Toxicology, 11 (1), 33-41.
9.Rahimi, B., & Neatkhah, P. (2001). LC50 and bioaccumulation of Cd in different life stages of Artemia urmiana. Iranian Scientific Fisheries Journal, 20 (1). [In Persian]
10.Hondal, O., Arencibia, G., Isla, M., González, C., Triana, G., & Gattorno, N. (2012). Bioensayo de toxicidad con Artemia franciscana (Crustacea-Branchiopoda) en extractos de sedimento superficial del golfo de Guacanayabo, Cuba. RETEL, 32-50. [In Spanish]
11.Ocaranza-Joya, V., Manjarrez-Alcivar, I., Ruiz-González, L., Guerrero-Galvan, S., & Vega-Villasante, F. (2019). Sensitivity of different stages of Artemia franciscana to potassium dichromate. Pan-American Journal of Aquatic Sciences, 14, 8-12.
12.Cortés, A. A., Sánchez-Fortún, S., García, M., Martínez, H., & Bartolomé, M. C. (2018). Toxicological assessment of binary mixtures and individually of chemical compounds used in reverse osmosis desalination on Artemia franciscana nauplii. Latin american journal of aquatic research, 46, 673-682.
13.González-Pérez, Y. A. G. P. (2001). Determinación de la toxicidad aguda del dicromato de potasio en larvas de Artemia salina. Anuario toxicología, 1 (1), 104-108. [In Spanish]
14.Toğulga, M. (1998). The Short-Term Toxicity of Two Toxicants to Artemia Nauplii. Turkish Journal of Zoology, 22 (3).
15.Moshefi, M. H., Sharififar, F., Dehghan, G. R., & Ameri, A. (2009). Bioassay Screening of the Essential Oil and Various Extracts of Fruits of Heracleum persicum Desf. and Rhizomes of Zingiber officinale Rosc. using Brine Shrimp Cytotoxicity Assay. Iranian Journal of Pharmaceutical Research, 8 (1).
16.Sorgeloos, P., Remiche-Van Der Wielen, C., Persoone, G. (1978). The use of Artemia nauplii for toxicity tests-A critical analysis. Ecotoxicology and Environmental Safety, 2 (3-4), 249-255.
17.Persoone, G., Van de Vel, A., Van Steertegem, M., & De Nayer, B. (1989). Predictive value of laboratory tests with aquatic invertebrates: influence of experimental conditions. Aquatic Toxicology, 14 (2), 149-167.
18.Hall, L. W., Jr., & Anderson, R. D. (1995). The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Critical Review Toxicology, 25 (4), 281-346.
19.Wright, D. (1995). Trace metal and major ion interaction in aquatic animals. Marine Pollution Bulletin, 31, 8-18.
20.Rostami, F. (2018). Sub-lethal Ammonia Concentration (LC50) for Pacific white shrimp (Litopenaeus vannamei) Post larvae at Different Salinities. Journal of Utilization and Cultivation of Aquatics, 7 (3), 63-70. [In Persian]