Optimizing different physical conditions (temperature, light and pH) on the production of Spirulina laxissima biomass using response surface methodology

Document Type : scientific research article

Authors

1 Corresponding Author, Researcher, Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Sari, Iran

2 Assistant Prof., Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Sari, Iran

3 Researcher, Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Sari, Iran

4 Assistant Prof., Offshore Water Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Chabahar, Iran

Abstract

Considering the importance of using commercial species of spirulina microalgae, the purpose of this research is to identify the native species of spirulina of the Caspian Sea and to optimize the growth conditions of this microalgae in order to reduce costs and increase the benefits of its production. In this research, water sampling was done from the depth of 5 meters of Farah Abad-Mazandaran beach in 2023-2024. After observing the genus Spirulina, the isolation and purification of its microalgae was done using the dilution method, and finally, pure single colonies were obtained. Initial identification was done using optical microscope and valid identification keys. Molecular identification and sequencing of 16 SrRNAs were used to confirm its authenticity. The results of drawing the phylogenetic tree showed that the studied species has the lowest genetic distance with the microalgae Spirulina laxissima. After identifying the investigated cyanobacterial species, the effect of 3 physical factors of temperature (27-29°C), light (3000-3500 lux) and pH (9-11) on its biomass production using surface response method checked. The results obtained from the design of this experiment showed that after 14 days, the highest biomass (0.839 grams) was obtained at a temperature of 29 degrees, light of 3250 lux and pH=10.

Keywords

Main Subjects


1.Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., & Kolapalli, B. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev, 94(10), 49-68.
2.Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47 (4), 551.
3.Nirae, D. G. (2021). A Review on Nutritional and Protective Role of Spirulina Platensis. Journal of Nutrition & Food Sciences, 11.S9 (1000), 398.
4.Sankarapandian, V., Nitharsan, K., Parangusadoss, K., Gangadaran, P., Ramani, P., Venmathi Maran, B. A., & Jogalekar, M. P. (2022). Prebiotic Potential and Value-Added Products Derived from Spirulina laxissima SV001-A Step towards Healthy Living. BioTech, 11(13), 1-15.
5.Neag, E., Stupar, Z., Varaticeanu, C., Senila, M., & Roman, C. (2022). Optimization of Lipid extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design, 27, 6794.
6.Pinto, R. L. F., Ferreira, G. F., Beatriz, F. P., Cabral, F. A., & Filho, R. M. (2022). Lipid and phycocyanin extractions from Spirulina and economic assessment. J. Supercrit. 184, 105567. [CrossRef]
7.Alverson, A. J. (2008). Molecular systematic and the diatom species. Protist. 159(3), 339-353.
8.Nakao, M., Okamoto, S., Kohara, M., Fujishiro, T., Fujisawa, T., & Sato, S. (2010). CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res. 38(Database issue), D379-381.
9.Makhlogh, A., Nasralzadeh Saravi, H., Farabi, M. V., Roshan Tabari, M., Eslami, F., Rahmati, R., Tahami, F., Kayhan Thani, A. R., Dostdar, M., Khodaparast, N., Ganjian, A., & Mokrami, A. (2012). Investigating the diversity, biomass and abundance of phytoplankton in the southern basin of the Caspian Sea. Final report. Research Institute of Fisheries Sciences of the country. 122 p.
10.Ghobadian, S., Ganji Dost, S., Aiti, B., & Soltani, N. (2017). Designing a new engineering photobioreactor to optimize the amount of biomass produced in spirulina microalgae. New findings in biological sciences, 5 (1), 13-25.
11.Prabuthas, Srivastav, P. P., & Mishra, H. N. (2011). Optimization of environmental factors using RSM for Spirulina platensis cultivation. Nutrition & Food Science. 41 (3), 175-182.
12.Junique, L., Watier, L., Hortense, L., Viudes, F., Deblieck, M., & Watier, D. (2021). Determination by response surface methodology of optimal protein and phycocyanin productivity conditions in Arthrospira (Spirulina) platensis under different combinations of photoperiod variation and lighting intensity. Bioresource Technology Reports. 15, September 2021, 100763.
13.Rodrigues, M. S., Ferreira, L. S., Converti, A., Sato, S., & Carvalho, J. C. M. (2010). Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol. 101(12), 4491-8.
14.Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour. Technol.98(11), 2207-11.
15.Carvalho, J. C. M., Francisco, F. R., Almeida, K. A., Sato, S., & Converti, A. (2004). Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. J. Phycol. 40(3), 589-97.
16.Carmelo, R. T. (1997). Identifying marine phytoplankton. London: Publication Harcourt Brace Company.
17.Zabelina, M. M., Kisselev, I. A., Proshkina-Lavrenko, A. I., & Sheshukova, V. S. (1951). Diatoms. In: Inventory of freshwater algae of the USSR. Moscow: Sov. Nauka. Russia.
18.Aminikhoei, Z., Hafizia, M., Ghafari, H., Irfanifar, A., Delukian, A., Jadgal, S., Hosseini, A., Baloch, G., Bakhshhot, H., Rajab Pour, A. R., Amirian, H., Kasalkha, N., Mirshamlou, Q., Akbari, P., Dashti, K., Mirzaei, M. R., Sufi Moghadam, A. R., Lalshanas , M. R., & Karimi, M. (2019). The effect of Dunaliella Salina production biomass harvesting methods on the amount of beta-carotene extraction. The final report of the country's fisheries science research institute. 62 p.
19.Safari, R., & Reyhani-Poul, S. (1402). Microalgae spirulina (Spirulina platensis) cell culture and comparing the efficiency of enzyme methods, ultrasound, freeze-freezing and inorganic solvent in extracting phycocyanin pigment. Journal of researches of science and food industries of Iran, 19(5), 649-661.
20.Morin, P. A., Archer, F. I., Foote, A. D., Vilstrup, J., Allen, E. E., Wade, P., & Harkins, T. (2010). Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome research, 20(7), 908-916.
21.Manirafasha, E., Murwanashyaka, T., Ndikubwimana, T., Rashid Ahmed, N., Liu, J., Lu, Y., Zeng, X., Ling, X., & Jing, K. (2018). Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology, 255, 293-301. DOI: 10.1016/j.biortech.2017.12.068.
22.Xie, Y., Jin, Y., Zeng, X., Chen, J., Lu, Y., & Jing, K. (2015). Fed-batch strategy for enhancing cell growth and Cphycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresource Technology, 180, 281-287.
23.Shafiei, H., & Hassaninejad-Darzi, S. K. (2023). Simultaneous Electrocatalytic Measurement of Dopamine and Acetaminophen by Nanosensor Based on Ag@ Polyoxometalate@ Reduced Graphene Oxide and Ionic Liquid. Electrocatalysis, 14(6), 811-828.
24.Sharma, G., Kumar, M., Ali, M. I., & Jasuja, N. D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Microbial and Biochemical Technology, 6(4), 202-206.
25.Colla, L. M., Oliveira Reinehr, C., Reichert, C., & Costa, J. A. V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol. 98, 1489-1493.
26.Jerley, A. A., & Prabu, D. M. (2015). Purification, characterization and antioxidant properties of C-Phycocyanin from Spirulina platensis. Scrutiny International Research Journal of Agriculture, Plant Biotechnology and Bio Products, 2, 7-15.
27.Ismaiel, M. M., El-Ayouty, Y. M., & Piercey-Normorea, M. (2016). Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology, 47, 298-304.
28.Safari, R., Bardani Amiri, Z., & Esmailzadeh Kanari, R. (1402). Evaluation of the effect of temperature, time and pH on the stability of phycocyanin pigment extracted from Spirulina platensis. Scientific Journal of Iranian Fisheries. 26 (5), 94-85.
29.Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy reports. 5, 327-336.
30.Khazi, M., Demirel, Z., & Conk, D. M. (2018). Enhancement of biomass and phycocyanin content Spirulina platensis. Frontiers In Bioscience, 10, 276-286.
31.Hosseinpour Azad, N., & Fathalipour, Kh. (1400). Phylogenetic identification of microalgae isolated from the
southern shores of the Caspian Sea. Oceanography. 12 (47), 41-51
32.Paknejadi, M., Malek Ahmadi, F., & Soltani, N. (2017). Investigating the effect of different amounts of nitrogen on biomass production, lipid content and fatty acid composition in Spirulina Major. Journal of Aquatic Ecology,
8 (2), 14-30.