Effects of dietary supplementation of Hedera helix polyphenol antioxidant gene expression and biochemical parameters of zebrafish ( Danio rerio) exposed to polyethylene nanoplastic

Document Type : scientific research article

Authors

1 Ph.D. Student in Fisheries, Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Corresponding Author, Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Professor, Dept. of Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

5 Professor, Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

6 Professor of Comparative Anatomy and Cytology, Dept. of Science and Technology, University of Sannio, Benevento, Italy.

Abstract

Nanoplastic pollution poses a significant threat to ecosystems and aquatic organisms' health. This study aimed to investigate the protective effects of polyphenols extracted from ivy (Hedera helix) against the damages caused by nanoplastics in Zebrafish (Danio rerio). A two-phase experiment was designed. In the first phase, zebrafish were fed with diets supplemented with polyphenols at levels of 0%, 0.5%, 1%, and 2% for 8 weeks. In the second phase, the treatment groups were exposed to a constant concentration of 1% polyethylene nanoplastics for another 2 weeks while continuing with the same diets. At the end of each phase, samples were collected to assess biochemical parameters such as ALT, ALP, AST, CAT and SOD, as well as the relative expression of SOD and CAT genes. Overall, the results showed that the levels of ALT, ALP, AST, CAT and SOD increased significantly (p<0.05) with increasing polyphenol supplementation in both phases of the experiment. The relative expression of SOD and CAT genes also increased significantly (p<0.05) when polyphenols were supplemented alone or in combination with nanoplastics. This research suggests that ivy polyphenols can be a promising strategy to mitigate oxidative damage caused by nanoplastics and improve the health of aquatic organisms.

Keywords

Main Subjects


1.Kumar, M., Chen, H., Sarsaiya, S., Qin, S., Liu, H., Awasthi, M. K., & Taherzadeh, M. J. (2021). Current research trends on micro-and nano-plastics as an emerging threat to global environment: a review. Journal of Hazardous Materials, 409, 124967.
2.Gonçalves, J. M., & Bebianno, M. J. (2021). Nanoplastics impact on marine biota: A review. Environmental Pollution, 273, 116426.
3.Anwaruzzaman, M., Haque, M. I., Sajol, M. N. I., Habib, M. L., Hasan, M. M., & Kamruzzaman, M. (2022). Micro and nanoplastic toxicity on aquatic life: fate, effect and remediation strategy. In Biodegradation and Detoxification of Micropollutants in Industrial Wastewater (pp. 145-176). Elsevier.
4.Han, Y., Lian, F., Xiao, Z., Gu, S., Cao, X., Wang, Z., & Xing, B. (2022). Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. Journal of Hazardous Materials, 427, 127870.
5.Benson, N. U., Agboola, O. D., Fred-Ahmadu, O. H., De-la-Torre, G. E., Oluwalana, A., & Williams, A. B. (2022). Micro (nano) plastics prevalence, food web interactions, and toxicity assessment in aquatic organisms: a review. Frontiers in Marine Science, 9, 851281.
6.Shi, C., Liu, Z., Yu, B., Zhang, Y., Yang, H., Han, Y., & Zhang, H. (2024). Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. Science of the Total Environment, 906, 167404.
7.Oner, M., Atli, G., & Canli, M. 2008. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environmental Toxicology and Chemistry. 27(2): 306-366.
8.Banaee, M., Mehrpak, M., Nematdoost Haghi, B., & Noori, A. 2015. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio) by Vitamin C and Chitosan. International Journal of Aquatic Biology. 2(6), 362-371.
9.Jo, P. G., Choi, Y. K., & Choi, Ch. Y. (2008). Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comparative Biochemistry and Physiology. 147, 460-469.
10.Woo, S., Yum, S., Kim, D. W., & Park, H. S. 2009. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comparative Biochemistry and Physiology - Part C. 149, 427-432.
11.Sim, H. H., Shiwakoti, S., Lee, J. H., Lee, I. Y., Ok, Y., Lim, H. K., & Oak, M. H. (2024). 2, 7-Phloroglucinol-6,
6′-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. Science of the Total Environment, 949, 175007.
12.Shokry, A., El-Shiekh, R., Kamel, G., & Ramadan, A. (2022). Phytochemical contents, biological activities and therapeutic applications of hedera helix (ivy leaf) extracts: a review. The Natural Products Journal, 12(4), 22-32.
13.Ahmadifar, E., Yousefi, M., Karimi, M., Fadaei Raieni, R., Dadar, M., Yilmaz, S., & Abdel-Latif, H. M. (2021). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Reviews in Fisheries Science & Aquaculture, 29(4), 478-511.
14.Imperatore, R., Orso, G., Facchiano, S., Scarano, P., Hoseinifar, S. H., Ashouri, G., & Paolucci, M. (2023). Anti-inflammatory and immunostimulant effect of different timing-related administration of dietary polyphenols on intestinal inflammation in zebrafish, Danio rerioAquaculture, 563, 738878.
15.Yang, G., Yu, R., Geng, S., Xiong, L., Yan, Q., Kumar, V., & Peng, M. (2021). Apple polyphenols modulates the antioxidant defense response and attenuates inflammatory response concurrent with hepatoprotective effect on grass carp (Ctenopharyngodon idellus) fed low fish meal diet. Aquaculture, 534, 736284.
16.Bhat, R. A. H., Sidiq, M. J., & Altinok, I. (2024). Impact of microplastics and nanoplastics on fish health and reproduction. Aquaculture, 741037.
17.Chen, J., Lu, C., Xie, W., Cao, X., Zhang, J., Luo, J., & Li, J. (2024). Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish (Danio rerio). International Journal of Nanomedicine, 13789-13803.
18.Sankar, S., Chandrasekaran, N., Moovendhan, M., & Parvathi, V. D. (2025). Zebrafish and Drosophila as Model Systems for Studying the Impact of Microplastics and Nanoplastics‐A Systematic Review. Environmental Quality Management, 34(3), e70021.
19.Crouzier, L., Richard, E. M., Sourbron, J., Lagae, L., Maurice, T., & Delprat, B. (2021). Use of zebrafish models to boost research in rare genetic diseases. International journal of molecular sciences, 22(24), 13356.
20.Angom, R. S., & Nakka, N. M. R. (2024). Zebrafish as a Model for Cardiovascular and Metabolic Disease: The Future of Precision Medicine. Biomedicines, 12(3), 693.
21.Jahazi, M. A., Hoseinifar, S. H., Jafari, V., Hajimoradloo, A., Van Doan, H., & Paolucci, M. (2020). Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. Aquaculture, 517, 734709.‏
22.Banaee, M., Multisanti, C. R., Impellitteri, F., Piccione, G., & Faggio, C. (2024). Environmental toxicology of microplastic particles on fish: A review. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 110042.
23.Mohammadzadeh, S., Zaretabar, A., Ahmadifar, E., Khajeh, M., Moghadam, M. S., & Milla, S. (2024). Polystyrene nanoplastics disrupt hepatic vitellogenin metabolism and impairs the reproduction process in female zebrafish. Annals of Animal Science.
24.Zargari, A., Nejatian, M., Abbaszadeh, S., Jahanbin, K., Bagheri, T., Hedayati, A., & Sheykhi, M. (2023). Modulation of toxicity effects of CuSO4 by sulfated polysaccharides extracted from brown algae (Sargassum tenerrimum) in Danio rerio as a model. Scientific Reports, 13(1), 11429.
25.Rastiannasab, A., Afsharmanesh, S., Rahimi, R., & Sharifian, I. (2016). Alternations in the liver enzymatic activity of Common carp, Cyprinus carpio in response to parasites, Dactylogyrus spp. and Gyrodactylus spp. Journal of Parasitic Diseases, 40, 1146-1149.
26.Batista, M. T. O., Rodrigues Junior, E., Feijó-Oliveira, M., Ribeiro, A. C., Rodrigues, E., Suda, C. N. K., & Vani, G. S. (2014). Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin. Revista Ambiente & Água, 9, 621-631.
27.Safari, R., Hoseinifar, S. H., & Kavandi, M. (2016). Modulation of antioxidant defense and immune response in
zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiology and Biochemistry, 42, 1733-1739.
28.Lee, J. H., Kang, J. C., & Kim, J. H. (2023). Toxic effects of microplastic (Polyethylene) on fish: Accumulation, hematological parameters and antioxidant responses in Korean Bullhead, Pseudobagrus fulvidraco. Science of the Total Environment, 877, 162874.
29.Safari, R., Hoseinifar, S. H., Imanpour, M. R., Mazandarani, M., Sanchouli, H., & Paolucci, M. (2020). Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture, 528, 735494.
30.Ahmadi, A., Bagheri, D., Hoseinifar, S. H., Morshedi, V., & Paolucci, M. (2022). Beneficial role of polyphenols as feed additives on growth performances, immune response and antioxidant status of Lates Calcarifer (Bloch, 1790) juveniles. Aquaculture, 552, 737955.
31.Hoseinifar, S. H., Fazelan, Z., El-Haroun, E., Yousefi, M., Yazici, M., Van Doan, H., & Paolucci, M. (2023). The effects of grapevine (Vitis vinifera L.) leaf extract on growth performance, antioxidant status, and immunity of zebrafish (Danio rerio). Fishes, 8(6), 326.
32.Qian, Y. C., Wang, X., Ren, J., Wang, J., Limbu, S. M., Li, R. X., & Du, Z. Y. (2021). Different effects of two dietary levels of tea polyphenols on the lipid deposition, immunity and antioxidant capacity of juvenile GIFT tilapia (Oreochromis niloticus) fed a high-fat diet. Aquaculture, 542, 736896.
33.Ahmadifar, E., Yousefi, M., Karimi, M., Raieni, R. F., Dadar, M., Yılmaz, S., Dawood, M. A., & Abdel‐Latif, H. M. (2020). Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Reviews in Fisheries Science & Aquaculture, 29, 478-511.
34.Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of toxicology, 94(3), 651-715.
35.Pan, S., Yan, X., Li, T., Suo, X., Liu, H., Tan, B., & Dong, X. (2022). Impacts of tea polyphenols on growth, antioxidant capacity and immunity in juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed high-lipid diets. Fish & Shellfish Immunology, 128, 348-359.
36.Yang, H., Ju, J., Wang, Y., Zhu, Z., Lu, W., & Zhang, Y. (2024). Micro-and nano-plastics induce kidney damage and suppression of innate immune function in zebrafish (Danio rerio) larvae. Science of the Total Environment, 931, 172952.
37.Kanner, J. (2020). Polyphenols by generating H2O2, affect cell redox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: in vitro, in vivo and human health. Antioxidants, 9(9), 797.
38.Yu, H., Sattanathan, G., Yu, L., Li, L., & Xiao, Y. (2024). Impact of Nutritional Tea Polyphenols on Growth, Feed Efficiency, Biochemical Traits, Antioxidant Capacity, Haematological Parameters and Immunity in Coho Salmon (Oncorhynchus kisutch). Animals, 14(14), 2104.
39.Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M. J., & Spencer, J. P. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106-1131.