1.Ishangulyyev, R., Kim, S., & Lee, S. H. (2019). Understanding food loss and waste-why are we losing and wasting food?. Foods, 8(8), 297.
2.Abedi-Firoozjah, R., Yousefi, S., Heydari, M., Seyedfatehi, F., Jafarzadeh, S., Mohammadi, R., ... & Garavand, F. (2022). Application of red cabbage anthocyanins as pH-sensitive pigments in smart food packaging and sensors. Polymers, 14(8), 1629.
3.Mohan, C. O. (2018). Modern practices in seafood packaging.
4.Tamime, A. (2011). Himalayan fermented foods–Microbiology, nutrition and ethnic values.
5.Wu, D., Zhang, M., Chen, H., & Bhandari, B. (2021). Freshness monitoring technology of fish products in intelligent packaging. Critical Reviews in Food Science and Nutrition, 61(8), 1279-1292.
6.Abedi‐Firoozjah, R., Salim, S. A., Hasanvand, S., Assadpour, E., Azizi‐Lalabadi, M., Prieto, M. A., & Jafari, S. M. (2023). Application of smart packaging for seafood: A comprehensive review. Comprehensive reviews in food science and food safety, 22(2), 1438-1461.
7.Guo, X., Ma, L., Wu, W., Li, S., Lei, X., Wu, X., ... & Liu, F. (2022). Ultra-sensitive flexible piezoresistive pressure sensor prepared by laser-assisted copper template for health monitoring. Sensors and Actuators A: Physical, 334, 113325.
8.Hyun, W. J., Park, O. O., & Chin, B. D. (2013). Foldable graphene electronic circuits based on paper substrates. Advanced Materials, 25(34), 4729-4734.
9.Jin, P., Wang, P., Pang, W., Wang, H., Jiao, Y., Zhang, J., ... & Feng, X. (2022). Fluid microchannel encapsulation to improve the stretchability of flexible electronics. Advanced Materials Technologies, 7(6), 2101126.
10.Walsh, H., & Kerry, J. P. (2012). Packaging of ready-to-serve and retail-ready meat, poultry and seafood products. In Advances in meat, poultry and seafood packaging (pp. 406-436). Woodhead Publishing.
11.Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical reviews in food science and nutrition, 57(6), 1239-1255.
12.Gokoglu, N. (2020). Innovations in seafood packaging technologies: A review. Food Reviews International, 36(4), 340-366.
13.Skilbrei, O. T. (2012). The importance of escaped farmed rainbow trout (Oncorhynchus mykiss) as a vector for the salmon louse (Lepeophtheirus salmonis) depends on the hydrological conditions in the fjord. Hydrobiologia, 686, 287-297.
14.Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques. American journal of applied sciences, 7(7), 859.
15.Shahidi, F., & Botta, J. R. (2012). Seafoods: chemistry, processing technology and quality. Springer Science & Business Media.
16.Tsironi, T. N., & Taoukis, P. S. (2018). Current practice and innovations in fish packaging. Journal of Aquatic Food Product Technology, 27(10), 1024-1047.
17.Nesvadba, P. (2003). Introduction to and outcome of the project “Multi-sensor techniques for monitoring the quality of fish”(MUSTEC, FAIR CT 98 4076). from Catch to Consumer, 175.
18.Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., & Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food chemistry, 102(2), 466-470.
19.Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate polymers, 156, 193-201.
20.Abolghasemi, M. M., Sobhi, M., & Piryaei, M. (2016). Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sensors and Actuators B: Chemical, 224, 391-395.
21.Horan, T. J. (2000). U.S. Patent No. 6,149,952. Washington, DC: U.S. Patent and Trademark Office.
22.Majeed, K., Jawaid, M., Hassan, A. A. B. A. A., Bakar, A. A., Khalil, H. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design (1980-2015), 46, 391-410.
23.Alamdari, N. E., Aksoy, B., Aksoy, M., Beck, B. H., & Jiang, Z. (2021). A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging. Talanta, 224, 121913.
24.Jin, K., Tang, Y., Liu, J., Wang, J., & Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. International Journal of Biological Macromolecules, 168, 331-338.
25.Khwaldia, K., Arab‐Tehrany, E., & Desobry, S. (2010). Biopolymer coatings on paper packaging materials. Comprehensive reviews in food science and food safety, 9(1), 82-91.
26.Tang, X. Z., Kumar, P., Alavi, S., & Sandeep, K. P. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Critical reviews in food science and nutrition, 52(5), 426-442.
27.Toğrul, H., & Arslan, N. (2003). Flow properties of sugar beet pulp cellulose and intrinsic viscosity–molecular weight relationship. Carbohydrate Polymers, 54(1), 63-71.
28.Martani, F., Maestroni, L., Torchio, M., Ami, D., Natalello, A., Lotti, M., ... & Branduardi, P. (2020). Conversion of sugar beet residues into lipids by Lipomyces starkeyi for biodiesel production. Microbial Cell Factories, 19, 1-13.
29.Modelska, M., Berlowska, J., Kregiel, D., Cieciura, W., Antolak, H., Tomaszewska, J., ... & Witonska, I. A. (2017). Concept for recycling waste biomass from the sugar industry for chemical and biotechnological purposes. Molecules, 22(9), 1544.
30.Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., ... & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308-317.
31.Koosha, M., & Hamedi, S. (2019). Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Progress in Organic Coatings, 127, 338-347.
32.Mohammadalinejhad, S., Almasi, H., & Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/ spoilage monitoring of shrimp. Food Control, 113, 107169.
33.Helrich, K. C. (Ed.). (1990). Official methods of Analysis of the AOAC. Volume 2 (No. Ed. 15, pp. xvii+-1298).
34.Franklin, G. L. (1938). The preparation of woody tissues for microscopic examination. For. Production and Research. Laboratory, 40.
35.Hakovirta, M., Aksoy, B., & Hakovirta, J. (2015). Self-assembled micro-structured sensors for food safety in paper based food packaging. Materials Science and Engineering: C, 53, 331-335.
36.Ezati, P., Tajik, H., Moradi, M., & Molaei, R. (2019). Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International journal of biological macromolecules, 132, 157-165.
37.Majdinasab, M., Hosseini, S. M. H., Sepidname, M., Negahdarifar, M., & Li, P. (2018). Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage. Journal of food science and technology, 55, 1695-1704.
38.Van der Schueren, L., De Meyer, T., Steyaert, I., Ceylan, Ö., Hemelsoet, K., Van Speybroeck, V., & De Clerck, K. (2013). Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydrate polymers, 91(1), 284-293.
39.Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and bioprocess technology, 6, 36-60.
40.Morsy, M. K., Zór, K., Kostesha, N., Alstrøm, T. S., Heiskanen, A., El-Tanahi, H., ... & Emnéus, J. (2016). Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food control, 60, 346-352.
41.Goulas, A. E., & Kontominas, M. G. (2005). Effect of salting and smoking-method on the keeping quality of
chub mackerel (Scomber japonicus): biochemical and sensory attributes. Food chemistry, 93(3), 511-520.
42.Taťpinar, K., Öztürk, M., Altay, V., & Polat, H. (2019). Sugar Beet: An Overutilized Ancient Crop. In Crop production technologies for sustainable use and conservation (pp. 321-363). Apple Academic Press.
43.Fengel, D., & Wegener, G. (Eds.). (2011). Wood: chemistry, ultrastructure, reactions. Walter de Gruyter.
44.Ziemiński, K., Romanowska, I., & Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste management, 32(6), 1131-1137.
45.Hiasa, S., Kumagai, A., Endo, T., & Edashige, Y. (2016). Prevention of aggregation of pectin‐containing cellulose nanofibers prepared from mandarin peel. Journal of Fiber Science and Technology, 72(1), 17-26.
46.Arafat, M. T., Mahmud, M. M., Wong, S. Y., & Li, X. (2021). PVA/PAA based electrospun nanofibers with pH-responsive color change using bromothymol blue and on-demand ciprofloxacin release properties. Journal of Drug Delivery Science and Technology, 61, 102297.
47.Qin, Y., Peng, T., Sun, H., Zeng, L., Li, Y., & Zhou, C. (2021). Effect of montmorillonite layer charge on the thermal stability of bentonite. Clays and Clay Minerals, 69(3), 328-338.
48.Banik, N., Jahan, S. A., Mostofa, S., Kabir, H., Sharmin, N., Rahman, M., & Ahmed, S. (2015). Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh Journal of Scientific and Industrial Research, 50(1), 65-70.
49.Miranda, K. W., Natarelli, C. V., Thomazi, A. C., Ferreira, G. M., Frota, M. M., Bastos, M. D. S. R., ... & Oliveira, J. E. (2020). Halochromic polystyrene nanofibers obtained by solution blow spinning for wine pH sensing. Sensors, 20(2), 417.
50.Ali, R., Saleh, S. M., & Aly, S. M. (2017). Fluorescent gold nanoclusters as pH sensors for the pH 5 to 9 range and for imaging of blood cell pH values. Microchimica Acta, 184, 3309-3315.
51.Gupta, V., Ramakanth, D., Verma, C., Maji, P. K., & Gaikwad, K. K. (2023). Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Conversion and Biorefinery, 13(17), 15451-15462.
52.Norrrahim, M. N. F., Kasim, N. A. M., Knight, V. F., Ujang, F. A., Janudin, N., Razak, M. A. I. A., ... & Yunus, W. M. Z. W. (2021). Nanocellulose: The next super versatile material for the military. Materials Advances, 2(5), 1485-1506.
53.Tabak, A., Yilmaz, N. E. R. İ. M. A. N., Eren, E. M. R. E., Caglar, B., Afsin, B., & Sarihan, A. D. E. M. (2011). Structural analysis of naproxen-intercalated bentonite (Unye). Chemical Engineering Journal, 174(1), 281-288.
54.Surendra, B. S., & Veerabhadraswamy, M. (2017). Microwave assisted synthesis of polymer via bioplatform chemical intermediate derived from Jatropha deoiled seed cake. Journal of Science: Advanced Materials and Devices, 2(3), 340-346.
55.Fosso-Kankeu, E., Potgieter, J., & Waanders, F. B. (2019). Removal of malachite green and toluidine blue dyes from aqueous solution using a clay-biochar composite of bentonite and sweet sorghum bagasse.
56.Özyurt, G., Özkütük, A. S., Şimşek, A., Yeşilsu, A. F., & Ergüven, M. (2015). Quality and shelf life of cold and frozen rainbow trout (Oncorhynchus mykiss) fillets: effects of fish protein-based biodegradable coatings. International Journal of Food Properties, 18(9), 1876-1887.
57.Majdinasab, M., Hosseini, S. M. H., Sepidname, M., Negahdarifar, M., & Li, P. (2018). Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage. Journal of food science and technology, 55, 1695-1704.
58.Jouki, M., Yazdi, F. T., Mortazavi, S. A., Koocheki, A., & Khazaei, N. (2014). Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. International journal of food microbiology, 174, 88-97.
59.Bélanger, P., Tanguay, F., Hamel, M., & Phypers, M. (2015). Foodborne illness: An overview of foodborne outbreaks
in Canada reported through outbreak summaries: 2008-2014. Canada Communicable Disease Report, 41(11), 254.
60.Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., & Rhim, J. W. (2021). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules, 166, 741-750.
61.Kostaki, M., Giatrakou, V., Savvaidis, I. N., & Kontominas, M. G. (2009). Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food microbiology, 26(5), 475-482.
62.Sivertsvik, M., Jeksrud, W. K., & Rosnes, J. T. (2002). A review of modified atmosphere packaging of fish and fishery products–significance of microbial growth, activities and safety. International journal of food science & technology, 37(2), 107-127.
63.Rastiani, F., Jebali, A., Hekmatimoghaddam, S., Khalili Sadrabad, E., Akrami Mohajeri, F., & Dehghani-Tafti, A. (2019). Monitoring the freshness of rainbow trout using intelligent PH-sensitive indicator during storage. Journal of Nutrition and Food Security, 4(4), 225-235.
64.Castro, P., Padrón, J. C. P., Cansino, M. J. C., Velázquez, E. S., & De Larriva, R. M. (2006). Total volatile base nitrogen and its use to assess freshness in European sea bass stored in ice. Food control, 17(4), 245-248.
65.Ceylan, Z., Sengor, G. F. U., & Yilmaz, M. T. (2017). A novel approach to limit chemical deterioration of gilthead sea bream (Sparus aurata) fillets: Coating with electrospun nanofibers as characterized by molecular, thermal, and microstructural properties. Journal of food science, 82(5), 1163-1170.
66.Kuswandi, B., Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food control, 25(1), 184-189.
67.Özoğul, F., & Özoğul, Y. (2000). Comparision of methods used for determination of total volatile basic nitrogen (TVB-N) in rainbow trout (Oncorhynchus mykiss). Turkish journal of zoology, 24(1), 113-120.
68.Ježek, F., & Buchtová, H. (2015). The effect of vacuum packaging on physicochemical changes in rainbow trout (Oncorhynchus mykiss) during cold storage. Acta Veterinaria Brno, 83(10), 51-58.
69.Kuswandi, B., Jayus, Oktaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on‐package sticker sensor based on methyl red for real‐time monitoring of broiler chicken cut freshness. Packaging technology and science, 27(1), 69-81.
70.Zaragoza, P., Fernandez-Segovia, I., Fuentes, A., Vivancos, J. L., Ros-Lis, J. V., Barat, J. M., & Martinez-Manez, R. (2014). Monitorization of Atlantic salmon (Salmo salar) spoilage using an optoelectronic nose. Sensors and Actuators B: Chemical, 195, 478-485.
71.Kuswandi, B., Hasanah, F., Pratoko, D. K., & Kristiningrum, N. (2022). Colorimetric Paper-Based Dual Indicator Label for Real-Time Monitoring of Fish Freshness. Food Technology and Biotechnology, 60(4), 499-508.