The effects of different levels of sodium alginate extracted from macroalgae (Sargassum angustifolium) on growth performance and some indicators of the non-specific immune system of blood serum in rainbow trout (Oncorhynchus mykiss,) fry.

Document Type : scientific research article

Authors

1 Corresponding Author, Ph.D. Student of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

The aim of this study was to investigate the effect of sodium alginate as a natural prebiotic on growth performance and some hematological parameters in rainbow trout . For this purpose, 432 rainbow trout with an average initial weight of 2.47 ± 0.31 were fed diets containing four levels of sodium alginate (0 (control), 0.5, 1, and 2) gr per kg of diet for 8 weeks. At the end of the experiment, growth and hematological indices were evaluated based on standard formulas were analyzed .The results showed that the final weight (FW), weight gain (WG), food conversion ratio (FCR) and condition factor (CF) improved in the treatments fed with sodium alginate and significantly different from those of control treatment (p < 0.05 ). specific growth rate (SGR) in the treatments fed with sodium alginate was the highest but there were no significantly differences between treatments (P>0.05). Based on the results obtained from the hematological indicators, the treatments fed with sodium alginate had the highest level of hemoglobin concentration, hematocrit (%), the number of red blood cells and white blood cells counts and MCHC. however, significant difference in Hematocrit ( %), and the number of white blood cells was observed between treatments fed with 2% sodium alginate and other treatments (P<0.05). No significant difference was observed in the MCH index between the experimental treatments and the control group (P>0.05). There were no significantly differences in MCH, between the experimental treatments and control group (P>0.05). MCV values in the treatments fed with sodium alginate was the lowest and the difference was significant compared to the control (P<0.05). Therefore, it can be concluded that the use of sodium alginate in the diet of rainbow trout leads to the improvement of growth performance and some hematological indices.

Keywords

Main Subjects


1.Sado, R. Y., Bicudo, Á. J. D. A., & Cyrino, J. E. P. (2008). Feeding dietary mannan oligosaccharides to juvenile Nile tilapia, Oreochromis niloticus, has no effect on hematological parameters and showed decreased feed consumption. Journal of the world Aquaculture Society, 39(6), 821-826.
2.Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, 433, 50-61.
3.Kapetanović, D., Kurtović, B., & Teskeredžić, E. (2005). Differences in bacterial population in rainbow trout (Oncorhynchus mykiss Walbum) fry after transfer from incubator to pools. Food technology and biotechnology, 43(2), 189-193.
4.Mohan, K., Ravichandran, S., Muralisankar, T., Uthayakumar, V., Chandirasekar, R., Seedevi, P., Abirami, R. G., & Rajan, D. K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish & shellfish immunology, 86, 1177-1193.
5.Deepika, R. C. (2017). Fucose-containing sulfated polysaccharides from Sargassum wight II: Extraction technology and anticancer activity assessment. International Journal of Pharmaceutical, Chemical & Biological Sciences, 7(3).
6.El-Sayed, M., Fleita, D., Rifaat, D., & Essa, H. (2018). Assessment of the state-of the-art developments in the extraction of antioxidants from marine algal species. Ingredients Extraction by Physicochemical Methods in Food, 367-397.
7.Hamed, I., Özogul, F., Özogul, Y., & Regenstein, J. M. (2015). Marine bioactive compounds and their health benefits: a review. Comprehensive reviews in food science and food safety, 14(4), 446-465.
8.De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 13(5), 2967-3028.
9.Rahman, M. A. (2016). An overview of the medical applications of marine skeletal matrix proteins. Marine Drugs, 14(9), 167.
10.Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106-126.
11.Alboofetileh, M., & Jeddi, S. (2022). A review on sources, extraction methods, properties and applications of alginate extracted from brown seaweeds. Advanced Aquaculture Sciences Journal, 6(7), 25-35.
12.Kelishomi, Z. H., Goliaei, B., Mahdavi, H., Nikoofar, A., Rahimi, M., Moosavi-Movahedi, A. A., Mamashli, F., & Bigdeli, B. (2016). Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food chemistry, 196, 897-902.
13.Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. Journal of Food Protection, 69(10), 2364-2369.
14.Agarwal, T., Narayana, S. G. H., Pal, K., Pramanik, K., Giri, S., & Banerjee, I. (2015). Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. International journal of biological macromolecules, 75, 409-417.
15.Al-Enazi, T. A., & Naik, A. V. (2016). Disinfection of alginate and addition silicon rubber-based impression materials: comparative analysis of 1% sodium hypochlorite and 2% glutaraldehyde. international journal of stomatology & occlusion medicine, 8(Suppl 1), 44-48.
16.Demajo, J. K., Cassar, V., Farrugia, C., Millan-Sango, D., Sammut, C., Valdramidis, V., & Camilleri, J. (2016). Effectiveness of disinfectants on antimicrobial and physical properties of dental impression materials. The International journal of prosthodontics, 29(1), 63-67.
17.Venkatesan, J., Nithya, R., Sudha, P. N., & Kim, S. K. (2014) Role of alginate in bone tissue engineering. Advances in food and nutrition research, 73, 45-57.
18.Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H., & Kim, S. K. (2015). Alginate composites for bone tissue engineering: A review. International journal of biological macromolecules, 72, 269-281.
19.Venkatesan, J., Jayakumar, R., Anil, S., Chalisserry, E. P., Pallela, R., & Kim, S. K. (2015). Development of alginate-chitosan-collagen based hydrogels for tissue engineering. Journal of Biomaterials and Tissue Engineering, 5(6), 458-464.
20.Venkatesan, J., Anil, S., & Kim, S. K. (2017). Introduction to seaweed polysaccharides. In Seaweed polysaccharides (pp. 1-9). Elsevier.
21.Van Doan, H., Hoseinifar, S. H., Tapingkae, W., & Khamtavee, P. (2017). The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 62, 139-146.
22.Van Doan, H., Tapingkae, W., Moonmanee, T., & Seepai, A. (2016). Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticusFish & shellfish immunology, 55, 186-194.
23.Van Doan, H., Hoseinifar, S. H., Tapingkae, W., Tongsiri, S., & Khamtavee, P. (2016). Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 58, 678-685.
24.Salarvand, S., Jalali, S. A. H., Mahboobi Soofiani, N., & Allafchian, A. (2020). 'Effect of Sodium Alginate on
Non-Specific Immune Parameters and Resistance to Ozone Toxicity in Rainbow Trout Fingerlings (Oncorhynchus mykiss), Journal of Animal Environment, 12(4), 343-352.
25.Berdimurodov, E., Eliboev, I., Kholikov, A., Akbarov, K., El Ibrahimi, B., Verma, D. K., Berdimuradov, K., Dagdag, O., & Haldhar, R. (2023). Pharmaceutical drugs as prominent corrosion inhibitors: fundamental and computational aspects of density functional theory. In Computational Modelling and Simulations for Designing of Corrosion Inhibitors (pp. 461-479). Elsevier.
26.Aanyu, M. (2016). Effects of phytogenic compounds on growth and nutritional physiology of Nile tilapia (Oreochromis niloticus).
27.Yeh, S. P., Chang, C. A., Chang, C. Y., Liu, C. H., & Cheng, W. (2008). Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp. and iridovirus, and juvenile non-specific immune responses of the orange-spotted grouper, Epinephelus coioidesFish & shellfish immunology, 25(1-2), 19-27.
28.Ross, N. W., Firth, K. J., Wang, A., Burka, J. F., & Johnson, S. C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Diseases of aquatic organisms, 41(1), 43-51.
29.Larsen, H. N. (1964). Comparison of various methods of hemoglobin detection of channel catfish blood. J. Progressive Fish-Culturist. 26, 11-15.
30.Blaxhall, P. C. (1972). The haematological assessment of the health of freshwater fish: a review of selected literature. Journal of fish biology, 4(4), 593-604.
31.Goldenfarb, P., Bowyer, F. P., Hall, E., & Brosious, E. (1971). Reproductibility in the hematology laboratory: the microhematocrite determination. J. Clinic. Pathol. 56, 3. 35-39.
32.Leonard, J. B. K., & Cormick, S. D. (2005). Changes in haematology during up stream migration to American shad. Journal of fish biology. 54, 1218-1230.
33.Lee, R. G., Foerster, J., Jukens, J., Paraskevas, F., & Greer, J. P. (1998). Rodgers GM. Wintrobe s-Clinical Hematology, New York, USA.
34.Ashouri, G., Soofiani, N. M., Hoseinifar, S. H., Jalali, S. A. H., Morshedi, V., Van Doan, H., & Mozanzadeh, M. T. (2018). Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish & shellfish immunology, 79, 34-41.
35.Heidarieh, M., Mirvaghefi, A. R., Akbari, M., Farahmand, H., Sheikhzadeh, N., Shahbazfar, A. A., & Behgar, M. (2012). Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish physiology and biochemistry, 38, 1169-1174.
36.Akbari, M., Heidarieh, M., Mirvafeghi, A., Farahmand, H., Sheikhzadeh, H., & Najafi Hajivar, E. (2015). Effect of dietary Ergosan and Hilyses on growth performance, hematological variables and immune response in rainbow trout (Oncorhynchus mykiss). Sustainable Aquaculture and Health Management Journal, 1(1), 1-6.
37.Sheikhzadeh, N., Pashaki, A. K., Nofouzi, K., Heidarieh, M., & Tayefi-Nasrabadi, H. (2012). Effects of dietary Ergosan on cutaneous mucosal immune response in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology, 32(3), 407-410.
38.Heidarieh, M., Soltani, M., Tamimi, A. H., & Toluei, M.H. (2011). Comparative effect of raw fiber (Vitacel) and alginic acid (Ergosan) on growth performance, immunocompetent cell population and plasma lysozyme content of giant sturgeon (Huso huso). Turkish Journal of Fisheries and Aquatic Sciences, 11(3).
39.Jalali, M. A., Ahmadifar, E., Sudagar, M., & Takami, G. A. (2009). Growth efficiency, body composition, survival and haematological changes in great sturgeon (Huso huso Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquaculture Research, 40(7), .804-809.
40.Kumar, S., Prakash, C., Chadha, N. K., Gupta, S. K., Jain, K. K., & Pandey, P. K. (2018). Effects of dietary alginic acid on growth and haemato-immunological responses of Cirrhinus mrigala (Hamilton, 1822) fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 19(5), 373-382.
41.Montero-Rocha, A., McIntosh, D., Sanchez-Merino, R., and Flores, I. (2006). Immunostimulation of white shrimp (Litopenaeus vannamei) following dietary administration of Ergosan. Journal of Invertebrate Pathology, 91(3), 188-194.
42.Shan, X., Xiao, Z., Huang, W., & Dou, S. (2008). Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture, 281(1-4), 70-76.
43.Yarahmadi, M. H. A., Nafisi, M., Elabd, H., Sotoudeh, E., Morshedi, V., & Mahboub, H. (2023). Dietary sodium alginate effect on growth, digestion, body composition, antioxidant capacity, and mucous immune response in yellowfin sea bream. Annals of Animal Science.
44.Sahli, M., Paknezhad, H., Hoseinifar, S. H., Sudagar, M., Mazandarani, M., & Sanchooli, H. (2020). 'The effects of different levels of low molecular weight sodium alginate on growth performance and mucus immune parameters in common carp (Cyprinus carpio). Journal of Animal Environment, 12(2), 195-202.
45.Akrami, R., Karimabadi, A., Mohammadzadeh, H., Ahmadifar, E. (2010). Effect of dietary mannanoligosaccharide on growth performance, survival, body composition and salinity stress resistance in Kutum (Rutilus frisii kutum) fry stage. Journal of marine sciences and technology, 8(3-4), 47-57.
46.Banaei, M., MIR, V. A., Rafei, G. R., & Majazi, A. B. (2008). Effect of sub-lethal diazinon concentrations on blood plasma biochemistry.  International Journal of Environmental Research, 2(2), 189-198.