Induction of antioxidant and immune genes expression in zebra fish (Danio rerio) exposed to polystyrene nanoplastic

Document Type : scientific research article

Authors

1 Dept. of Aquatics Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Corresponding Author, Dept. of Aquatics Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Dept. of Aquatics Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Abstract

During recent years, nanoplastics have been widely entered into aquatic environments so that nanoplastics pollution has become a global concern. In this regard, information on nanoplastics toxicity is limit for freshwater aquatics, especially at the molecular level. Thus, in the present study, effect of polystyrene nanoplastic was investigated on antioxidant and immune genes expression in zebra fish (Danio rerio). For this, polystyrene neoplastic was synthetized and sprayed on fish food. Zebra fish were then fed with the food containing 1, 2, 4 and 8% polystyrene nanoplastic, respectively, for 14 days. One group was also fed with the fish food without nanoplastic as the control. The relative gene expression levels of SOD, CAT and HSP70 were assessed after 14 days. The results indicated that polystyrene nanoplastic induced antioxidant genes expression so that a considerable increase was observed in CAT and SOD genes levels. An increase trend was also observed in antioxidant genes levels with the increase in polystyrene concentration up to 8%. Polystyrene also induced the HSP70 gene. The observed trend in HSP70 gene expression level with the increase in nanoplastic concentration was similar to the antioxidant genes. Considering the results, it could be said that nanoplastic can induce immune and antioxidant system in zebra fish.

Keywords

Main Subjects


1.Thompson, R. C. (2013). Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology. 23, 2388e2392.
2.Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances.
3, e1700782.
3.Lavers, J. L., & Bond, A. L. (2017). Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences of the USA. 114, 6052-6055.
4.Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 8, 4666.
5.Harding, S. (2016). Marine debris: understanding, preventing and mitigating the significant adverse impacts on marine and coastal biodiversity. Technical Serie, Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada.
6.Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans. 125 (1), e2018JC014719.
7.Horton, A. A., & Barnes, D. K. A. (2020). Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. Science of the Total Environment. 738, 140349.
8.Cole, M., & Galloway, T. S. (2015). Ingestion of nanoplastics and microplastics by Pacific Oyster Larvae. Environmental Science and Technology. 49, 14625-14632.
9.Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., Canonico, B., & Corsi, I. (2015). Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Marine Environmental Research. 111, 34-40.
10.Bergami, E., Bocci, E., Vannuccini, M.L., Monopoli, M., Salvati, A., Dawson, K.A., & Corsi, I. (2016).
Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicoly and Environmental Safety. 123, 18-25.
11.Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S., & Vethaak, A. D. (2016). Do plastic
particles affect microalgal photosynthesis and growth? Aquatic Toxicology. 170, 259-261.
12.Manfra, L., Rotini, A., Bergami, E., Grassi, G., Faleri, C., & Corsi, I. (2017). Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicology and Environmental Safety. 145, 557-563.
13.Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin. 77, 177-182.
14.Free, C. M., Jensen, O. P., Mason, S. A., Eriksen, M., Williamson, N. J., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin. 85, 156-163.
15.Peng, G., Xu, P., Zhu, B., Bai, M., & Li, D. (2018). Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities. Environmental Pollution. 234, 448-445.
16.Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in Taihu Lake, China. Environmental Pollution. 216, 711-719.
17.Lusher, A. (2015). Microplastics in the marine environment: Distribution, interactions and effects. In: Bergmann, M., Gutow, L., Klages, M. (eds). Marine Anthropogenic Litter. Springer, Cham, pp. 245-307.
18.Scherer, C., Weber, A., & Lambert, S. (2018). Interactions of microplastics with freshwater biota, In: Freshwater Microplastics. The Handbook of Environmental Chemistry, Wagner, M. and Lambert, S. (eds.). Springer, Cham.
19.Nolte, T. M., Hartmann, N. B., Kleijn, J. M., Garnæs, J., van de Meent, D., Jan Hendriks, A., & Baun, A. (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology. 183, 11-20.
20.Rist, S., Baun, A., & Hartmann, N. B. (2017). Ingestion of micro-and nanoplastics in Daphnia magna e quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution. 228, 398e407.
21.Mattsson, K., Ekvall, M. T., Hansson, A.L., Linse, S., Malmendal A., & Cedervall, T. (2015). Altered behaviour, Physiology and metabolism in fish exposed to polystyrene nanoparticles. Environmental Science and Technology. 49 (1), 553-561.
22.Jiang, Q., Chen, X., Jiang, H., Wang, M., Zhang, T., & Zhang, W. (2022). Effects of acute exposure to Polystyrene nanoplastics on the channel catfish larvae: insights from energy metabolism and transcriptomic Analysis. Frontiers in Physiology. 13, 923278.
23.Cheng, H., Dai, Y., Ruan, X., Duan, X., Zhang, C., Li, L., Huang, F., Shan, J., Liang, K., Jia, X., Wang, Q., & Zhao, H. (2022). Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadrinatus) based on high-throughput sequencing. Ecotoxicology and Environmental Safety. 245, 114114.
24.Feng, M., Luo, J., Wan, Y., Zhang, J., Lu, C., Wang, M., Dai, L., & Cao, X. (2022). Polystyrene nanoplastic exposure induces developmental toxicity by activating the oxidative stress response and base excision repair pathway in zebrafish (Danio rerio). ACS Omega. 7, 32153-32163.
25.Xiang, J., Yang, H., Che, C., Zou, H., Yang, H., Wei, Y., & Lin, S. (2009). Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays. PLoS ONE. 4, 2.
27.Parichy, D. M. (2006). Evolution of danio pigment pattern development. Heredity. 97, 3.
28.Sobhani, Z., Zhang, X., Gibson, C., Naidu, R., Megharaj, M., & Fang, C. (2020). Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm. Water research. 174, 115658.
29.Jeong, J., & Choi, J. (2019). Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere. 231, 249-255.
30.Cheng, Y., Zhu, L., Song, W., Jiang, C., Li, B., Du, Z., Wang, J., Wang, J., Li, D., & Zhang, K. 2020. Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida). Science of the Total Environment. 746, 141280.
31.Patra, I., Huy, D. T. N., Alsaikhan, F., Catalan, M. J., Tuan, P. V., Nurmatova, K. C., Majda, A., Shoukat, S., Yasin, G., Margiana, R., Walker, T. R., & Karbalaei, S. (2022). Toxic effects on enzymatic activity, gene expression and histopathological biomarkers in organisms exposed to microplastics and nanoplastics: a review. Environmental Sciences Europe. 34, 80.
32.Manabe, M., Tatarazako, N., & Kinoshita, M. (2011). Uptake, excretion and toxicity of nano-sized latex
particles on medaka (Oryzias latipes) embryos and larvae. Aquatic Toxicology. 105 (3), 576-581.
33.Guerrera, M. C., Aragona, M., Porcino, C., Fazio, F., Laurà, R., Levanti, M., Montalbano, G., Germanà, G., Abbate, F., & Germanà, A. (2021). Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Applied Sciences. 11, 5768.
34.Busom, I. B. (2022). Short term effects of nanoparticles in fish. Doctoral Thesis. Institute of Biotechnology and Biomedicine. 240 p.
35.Brandts, I., Balasch, J., Tvarijonaviciute, A., Barreto, A., Martins, M., Tort, L., Oliveira, M., & Teles, M. (2019). The role of humic acids on the effects of nanoplastics in Fish. In Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Capri, Italy. 164-169.
36.Zucker, B., Hanusch, J., & Bauer, G. (1997). Glutathione depletion in fibroblasts is the basis of apoptosis-induction by endogenous reactive oxygen species. Cell Death and Differentiation. 4, 388-395.
37.Sies, H. (1985). Oxidative stress: Introductory Remarks. 108 p.
38.Rangasamy, B., Hemalatha, D., Shobana, C., Nataraj, B., & Ramesh, M. (2018). Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere. 213, 423-433.
39.Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Huang, Y., & Zhao, Y. (2019). Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere. 215, 74-81.
40.Liu, Z., Jiao, Y., Chen, Q., Li, Y., Tian, J., Huang, Y., Cai, M., Wu, D., & Zhao, Y. (2020). Two sigma and two mu class genes of glutathione S-transferase in the waterflea Daphnia pulex: molecular characterization and transcriptional response to nanoplastic ex-posure. Chemosphere. 248, 126065.
41.Li, Y., Liu, Z., Li, M., Jiang, Q., Wu, D., Huang, Y., Jiao, Y., Zhang, M., & Zhao, Y. (2020). Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. Journal of Hazardous Materials. 398, 122990.
42.Auten, R. L., & Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Research. 66 (2), 121-127.
43.Bhattachrya, P., Lin, S., Turner, J. P., & Ke, P. C. (2010). Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. Journal of Physical Chemistry C. 114, 16556-16561. 
44.Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J., & Thompson, R. C. (2013). Microplastics move pollutants and additives to worms, reducing functions linked to health and bio-diversity. Current Biology. 23, 2388-2392. 
45.Yu, P., Liu, Z., Wu, D., Chen, M., Lv, W., & Zhao, Y., 2018. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquatic Toxicology. 28e36.
46.Rhee, J. S., Raisuddin, S., Lee, K. W., Seo, J. S., Ki, J. S., Kim, I. C., Park, H. G., & Lee, J. S. (2009). Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology C: Toxicology and Pharmacology. 149, 104e112.

47.Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacology and Therapeutics. 80 (2), 183-201.