Comparative effect of chemical nanoparticles, green and heavy metal zinc on hematological indices of common carp (Cyprinus carpio)

Document Type : scientific research article

Authors

1 Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Corresponding Author, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Dept. of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.

Abstract

The notable increase in the use of zinc in different forms has led to environmental concerns regarding this element. In this study, three different forms of zinc metal, including zinc heavy metal zinc, zinc chemical and green synthesized nanoparticles were evaluated on blood indices of common carp for 21 days. 420 carp juveniles were divided into 7 experimental groups T0 (control), T1 and T2 (1.5 and 2.5 mg per liter of zinc heavy metal), T3 and T4 (1.5 and 2.5 mg per liter) liter of chemical zinc nanoparticles), T5 and T6 (1.5 and 2.5 mg/liter green zinc nanoparticles), and blood parameters were evaluated. Accordingly the hematocrit percentage in T1 and T2 treatments, the number of red blood cells in T2, T4 and T5 treatments, the amount of hemoglobin in T2, T4, T5 and T6 treatments and the amount of MCH only in T6 group showed a significant decrease compared to the control group (P>0.05). The lowest amount of MCHC was recorded in T4 (19.23 ± 1.60), T5 (18.61 ± 2.33), and T6 (18.48 ± 4.80) treatments. In addition, the amount of MCV in T1 recorded a significant decrease compared to the control group (P<0.05). The number of white blood cells exhibited a significant decrease in all treatments except 1.5 mg/liter green zinc nanoparticles compared to the control group (P<0.05). The lymphocyte percentage also illustrated a significant decrease in T1, T2, and T3 treatments as compared with the control group (P< 0.05). In contrast, the monocytes percentage in the groups exposed to the heavy metal showed a significant increase compared to other treatments. Also, the neutrophils percentage in T1, and T2 groups recorded a significant increase compared to the control and green zinc nanoparticles groups (P< 0.05). These results may be related to the adverse effects of zinc (in different forms) on hematopoietic tissues, weakness in using dietary iron, and hormonal fluctuations that led to adverse effects on blood parameters. Therefore, based on the findings of this study, zinc metal even in its green form can have adverse effects on the blood parameters of carp fish.

Keywords

Main Subjects


1.Ben-Slama, I., Mrad, I., Rihane, N., Mir, L. E., Sakly, M., & Amara, S. (2015). Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. Journal of Nanomedicine and Nanotechnology, 1-6. 2.Cheng, Z., Man, Y. B., Nie, X. P., & Wong, M. H. (2013). Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere, 90 (7), 2142-2148. 3.Zhao, C. Y., Tan, S. X., Xiao, X. Y., Qiu, X. S., Pan, J. Q., & Tang, Z. X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological trace element research, 160 (3), 361-367. 4.Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Shah, A. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere, 70 (10), 1845-1856.5.Ebrahimi, M., & Taherianfard, M. (2010). Concentration of four heavy metals (cadmium, lead, mercury, and arsenic) in organs of two cyprinid fish (Cyprinus carpio and Capoeta sp.) from the Kor River (Iran). Environmental monitoring and assessment, 168 (1), 575-585.6.Dekani, L., Johari, S. A., & Joo, H. S. (2019). Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). Science of the Total Environment, 656, 1191-1198.7.Lin, S., Lin, X., Yang, Y., Li, F., & Luo, L. (2013). Comparison of chelated zinc and zinc sulfate as zinc sources for growth and immune response of shrimp (Litopenaeus vannamei). Aquaculture, 406 (3), 79-84.8.Fialkowski, W., Fialkowska, E., Smith, B. D., & Rainbow, P. S. (2003). Biomonitoring survey of trace metal pollution in streams of a catchment draining a zinc and lead mining area of Upper Silesia, Poland using the amphipod Gammarus fossarum. International Review of Hydrobiology: A Journal Covering all Aspects of Limnology and Marine Biology, 88 (2), 187-200.9.Faiz, H., Zuberi, A., Nazir, S., Rauf, M., & Younus, N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology, 17 (3), 568-574.10.Kori-Siakpere, O., & Ubogu, E. O. (2008). Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp. (Osteichthyes: Clariidae). African Journal of Biotechnology, 7, 12.11.Kousar, S., & Javed, M. (2014). Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species. Pakistan Veterinary Journal, 34 (2), 161-164.12.Javed, M., & Usmani, N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89 (2), 389-403.13.Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and bioprocess technology, 4 (1), 39-47.14.Wang, C., Cheng, K., Zhou, L., He, J., Zheng, X., Zhang, L., Zhong, X., & Wang, T. (2017). Evaluation of long-term toxicity of oral zinc oxide nanoparticles and zinc sulfate in mice. Biological trace element research, 178 (2), 276-282.15.Kumari, S., Panda, P. K., Pramanik, N., Verma, S. K., & Mallick, M. A. (2019). Molecular aspect of phytofabrication of gold nanoparticle from Andrographis peniculata photosystem II and their in vivo biological effect on embryonic zebrafish (Danio rerio). Environmental Nanotechnology, Monitoring & Management, 11, 100201.16.Ladhar, C., Geffroy, B., Cambier, S., Treguer-Delapierre, M., Durand, E., Brèthes, D., & Bourdineaud, J. P. (2014). Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicology, 8 (6), 676-685.17.Verma, Y., Rani, V., & Rana, S. V. S. (2020). Assessment of cadmium sulphide nanoparticles toxicity in the gills of a fresh water fish. Environmental Nanotechnology, Monitoring & Management, 13: 100280.18.Ibrahim, A. T. A., Banaee, M., & Sureda, A. (2021). Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 242, 108942.
19.Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., & Wingett, D. G. (2009). The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale research letters, 4 (12), 1409-1420.20.Ibrahim, A. T. A. (2020). Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. Journal of Trace Elements in Medicine and Biology, 61, 126507. 21.Alkaladi, A., El-Deen, N. A. N., Afifi, M., & Zinadah, O. A. A. (2015). Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi journal of biological sciences, 22 (5), 556-563.22.Ghafarifarsani, H., Hedayati, S. A., Yousefi, M., Hoseinifar, S. H., Yarahmadi, P., Mahmoudi, S. S., & Van Doan, H. (2022). Toxic and bioaccumulative effects of zinc nanoparticle exposure to goldfish, Carassius auratus (Linnaeus, 1758). Drug and Chemical Toxicology. 1-11. 23.Yeganeh, S., Adel, M., Ahmadvand, S., Ahmadvand, S., & Velisek, J. (2016). Toxicity of organic selenium (Selemax) and its effects on haematological and biochemical parameters and histopathological changes of common carp (Cyprinus carpio L., 1758). Toxin Reviews, 35 (3-4), 207-213.24.Lakshmi, S. J., Bai, R. R., Sharanagouda, H., Ramachandra, C. T., Nadagouda, S., & Doddagoudar, S. R. (2017). Biosynthesis and characterization of ZnO nanoparticles from spinach (Spinacia oleracea) leaves and its effect on seed quality parameters of greengram (Vigna radiata). International Journal of Current Microbiology and Applied Sciences, 6 (9), 3376-3384.25.Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32 (5), 55-61.26.Dacie, J. V., & Lewis, S. M. (1984). Practical haematology. 6th edition. Churchil Livingstone, Edinburgh. pp. 32-34 & 38-39.27.Thangapandiyan, S., & Monika, S. (2020). Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biological trace element research, 195 (2), 636-647.28.Ali, A. J., Jalaluddin Akbar, N., Arun Kumar, M. S., Vijayakumar, S., & Akbar John, B. (2018). Effect of cadmium chloride on the haematological profles of the freshwater ornamental fsh, Cyprinus carpio koi (linnaeus, 1758). Journal Clean WAS, 2, 10-15.29.Soundararajan, M., Veeraiyan, G., & Samipillai, S. S. (2014). Effect of heavy metal arsenic on haematological parameters of freshwater fish, Tilapia mossambica. International Journal of Modern Research and Reviews, 2 (3), 132-135.30.Çelik, E. Ş., Kaya, H., Yilmaz, S., Akbulut, M., & Tulgar, A. (2013). Effects of zinc exposure on the accumulation, haematology and immunology of Mozambique tilapia, Oreochromis mossambicus. African Journal of Biotechnology, 12 (7), 25-36.31.Oti, E. E., & Avoaja, D. A. (2005). Haematological assessment of freshwater catfishes, Clarias gariepinus (Burch) and" Heteroclarias"(Hybrid) exposed to sublethal concentrations of zinc. Pakistan Journal of Zoology, 37 (2), 101-105. 32.Kodama, M., Ogata, T., & Yamamori, K. (1982). Hemolysis of erythrocytes of rainbow trout Salmo gairdneri exposed to zinc polluted water. Bulletin of the Japanese Society of Scientific Fisheries, 10 (23), 140-153.33.Buentello, J. A., Goff, J. B., & Gatlin III, D. M. (2009). Dietary zinc requirement of hybrid striped bass, Morone chrysops× Morone saxatilis, and bioavailability of two chemically different zinc compounds. Journal of the World Aquaculture Society, 40 (5), 687-694.34.Bujjamma, P., & Padmavathi, P. (2018). Effect of cadmium on haematological changes in a freshwater catfish, Heteropneustes fossilis. International Journal of Zoology Studies, 3 (1), 132-141.35.Abarghoei, S., Hedayati, A., Ghorbani, R., Miandareh, H. K., & Bagheri, T. (2016). Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of goldfish Carassius auratus. International Journal of Environmental Science and Technology, 13 (7), 1753-1760.36.Gaber, H. S., El-Kasheif, M. A., Ibrahim, S. A., & Authman, M. (2013). Effect of water pollution in El-Rahawy drainage canal on hematology and organs of freshwater fish. World Applied Sciences Journal, 21 (3), 329-341.37.Olanike, K., Funmilola, A., Olufemi, B., & Olajide, O. (2008). Sub lethal concentrations toxicity and blood profle of adult Clarias gariepinus exposed to lead nitrate. The Internet Journal of Hematology, 4 (2), 4. 2-10.38.Ghafarifarsani, H., Hoseinifar, S. H., Aftabgard, M., & Van Doan, H. (2022). The improving role of savory (Satureja hortensis) essential oil for Caspian
roach (Rutilus caspicus) fry: Growth, haematological, immunological, and antioxidant parameters and resistance to salinity stress. Aquaculture, 548, 737653.39.Mirghaed, A. T., Yarahmadi, P., Craig, P. M., Farsani, H. G., Ghysvandi, N., & Eagderi, S. (2018). Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. International Journal of Aquatic Biology, 6 (4), 221-234.40.Khabbazi, M., Harsij, M., Hedayati, S. A. A., Gerami, M. H., & Ghafari-farsani, H. (2015). Histopathology of rainbow trout gills after exposure to copper. Iranian Journal of Ichthyology, 1 (3), 191-196.