1.Wiech, M., Silva, M., Meier, S., Tibon, J., Berntssen, M. H. G., Duinker, A., & Sanden, M. (2020). Undesirables in mesopelagic species and implications for food and feed safety insights from norwegian fjords. Foods, 9 (9).2.Nordhagen, A., Rizwan, A. A. M., Aakre, I., Reksten, A. M., Pincus, L. M., Bøkevoll, A., Mamun, A., Thilsted, S. H., Htut, T., Somasundaram, T., & Kjellevold, M. (2020). Nutrient composition of demersal, pelagic, and mesopelagic fish species sampled off the coast of bangladesh and their potential contribution to food and nutrition security-The EAF-nansen programme. Foods, 9 (6).3.Alvheim, A. R., Kjellevold, M., Strand, E., Sanden, M., & Wiech, M. (2020). Mesopelagic species and their potential contribution to food and feed security-a case study from Norway. Foods, 9 (3).4.Abdollahi, M., Marmon, S., Chaijan, M., & Undeland, I. (2016). Tuning the pH-shift protein-isolation method for maximum hemoglobin-removal from blood rich fish muscle. Food Chemistry, 212, 213-224. 5.Shaviklo, A. R. (2020). A Comprehensive Review on Animal Feed, Human Food and Industrial Application of Lanternfishes; from Prototypes to Products. Turkish Journal of Fisheries and Aquatic Sciences, 20 (11), 827-843.6.Shaviklo, A. R., & Rafipour, F. (2013). Surimi and surimi seafood from whole ungutted myctophid mince. LWT - Food Science and Technology, 54 (2), 463-468.7.Chai, H. J., Chan, Y. L., Li, T. L., Shiau, C. Y., & Wu, C. J. (2013). Evaluation of lanternfish (Benthosema pterotum) hydrolysates as antioxidants against hydrogen peroxide induced oxidative injury. Food Research International, 54 (2), 1409-1418.8.Chai, H. J., Chan, Y. L., Li, T. L., Chen, Y. C., Wu, C. H., Shiau, C. Y., & Wu, C. J. (2012). Composition characterization of Myctophids (Benthosema pterotum): Antioxidation and safety evaluations for Myctophids protein hydrolysates. Food Research International, 46 (1), 118-126.9.Hayes, M., Mora, L., Hussey, K., & Aluko, R. E. (2016). Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innovative Food Science & Emerging Technologies, 37 (Part B), 253-260.10.Kakko, T., Aitta, E., Laaksonen, O., Tolvanen, P., Jokela, L., Salmi, T., Damerau, A., & Yang, B. (2022). Baltic herring (Clupea harengus membras) protein isolate produced using the pH-shift process and its application in food models. Food Research International, 158 (April), 111578. 11.Nisov, A., Kakko, T., Alakomi, H. L., Lantto, R., & Honkapää, K. (2022). Comparison of enzymatic and pH shift methods to extract protein from whole Baltic herring (Clupea harengus membras) and roach (Rutilus rutilus). Food Chemistry, 373 (November 2021).12.Abdollahi, M., Rezaei, M., Jafarpour, A., & Undeland, I. (2017). Dynamic rheological, microstructural and physicochemical properties of blend fish protein recovered from kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) by the pH-shift process or washing- based technology. Food Chemistry, 229, 695-709.13.Pezeshk, S., Rezaei, M., Hosseini, H., & Abdollahi, M. (2021). Impact of pH-shift processing combined with ultrasonication on structural and functional properties of proteins isolated from rainbow trout by-products. Food Hydrocolloids, 118 (December 2020), 106768.14.van Berlo, E., Undeland, I., & Abdollahi, M. (2023). Physicochemical and functional properties of protein isolated from herring co-products; effects of catching season, pre-sorting, and co-product combination. Food Chemistry, 398 (August 2022), 133947.15.Abdollahi, M., & Undeland, I. (2018). Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products. Food and Bioprocess Technology, 11 (9), 1733-1749.16.Zhang, J., Ström, A., Bordes, R., Alminger, M., Undeland, I., & Abdollahi, M. (2023). Radial discharge high shear homogenization and ultrasonication assisted pH-shift processing of herring co-products with antioxidant-rich materials for maximum protein yield and functionality. Food Chemistry, 400 (August 2022).17.Yoon, I. S., Lee, H. J., Kang, S. I., Park, S. Y., Kang, Y. M., Kim, J. S., & Heu, M. S. (2019). Food functionality of protein isolates extracted from Yellowfin Tuna (Thunnus albacares) roe using alkaline solubilization and acid precipitation process. Food Science and Nutrition, 7 (2), 412-424.18.Cha, J. W., Yoon, I. S., Lee, G. W., Kang, S. I., Park, S. Y., Kim, J. S., & Heu, M. S. (2020). Food functionalities and bioactivities of protein isolates recovered from skipjack tuna roe by isoelectric solubilization and precipitation. Food Science and Nutrition,8 (4), 1874-1887.19.Leong, Y. K., Yang, F. C., & Chang, J. S. (2021). Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. In Carbohydrate Polymers (Vol. 251).20.Ummat, V., Sivagnanam, S. P., Rajauria, G., O’Donnell, C., & Tiwari, B. K. (2021). Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends in Food Science and Technology, 110 (September 2020), 90-106.21.Nguyen, T. T., Luo, X., Su, P., Balakrishnan, B., & Zhang, W. (2020). Highly efficient recovery of nutritional proteins from Australian Rock Lobster heads (Jasus edwardsii) by integrating ultrasonic extraction and chitosan
co-precipitation. Innovative Food Science and Emerging Technologies, 60 (January), 102308.22.Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta,
76 (5), 965-977. 23.Chen, W., Wang, W. P., Zhang, H. S., & Huang, Q. (2012). Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydrate Polymers, 87 (1), 614-619.24.Undeland, I., Kelleher, S. D., & Hultin, H. O. (2002). Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process. Journal of Agricultural and Food Chemistry,
50 (25), 7371-7379.25.Abdollahi, M., Rezaei, M., Jafarpour, A., & Undeland, I. (2018). Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chemistry, 242 (May 2017), 568-578.
26.Chaijan, M., Panpipat, W., & Benjakul, S. (2010). Physicochemical and gelling properties of short-bodied mackerel (Rastrelliger brachysoma) protein isolate prepared using alkaline-aided process. Food and Bioproducts Processing, 88 (2-3), 174-180.27.Cardoso, C., Mendes, R., Vaz-Pires, P., & Nunes, M. L. (2010). Effect of salt and MTGase on the production of high quality gels from farmed sea bass. Journal of Food Engineering, 101 (1), 98-105.28.Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., & Liu, D. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72–81.29.Kristinsson, H. G., Theodore, A. E., Demir, N., & Ingadottir, B. (2006). A Comparative Study between Acid-and Alkali-aided Processing and Surimi Processing for the Recovery of Proteins from Channel Catfish Muscle. Journal of Food Science, 70 (4), 298-306.30.Cravotto, G., & Binello, A. (2016). Low-Frequency, High-Power Ultrasound- Assisted Food Component Extraction. In Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. Elsevier.
31.Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A., & Kammoun, R. (2017). Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275-282.32.Kristinsson, H. G., & Ingadottir, B. (2006). Recovery and Properties of Muscle Proteins Extracted from Tilapia (Oreochromis niloticus) Light Muscle by pH Shift Processing. Journal of Food Science, 71 (3), 132-141.33.Pal, G. K., & Suresh, P. V. (2017). Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering: C, 70, 32-40.34.YU, D., CHI, C. F., WANG, B.,DING, G. F., & LI, Z. R. (2014). Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis). Chinese Journal of Natural Medicines, 12 (9), 712-720.35.Li, J., Wu, M., Wang, Y., Li, K., Du, J., & Bai, Y. (2020). Effect of pH-shifting treatment on structural and heat induced gel properties of peanut protein isolate. Food Chemistry, 325 (April), 126921.36.Abdollahi, M., Rezaei, M., Jafarpour, A., & Undeland, I. (2019). Effect of microbial transglutaminase and setting condition on gel properties of blend fish protein isolate recovered by alkaline solubilisation/isoelectric precipitation. International Journal of Food Science and Technology, 54 (3), 762-770.
37.Lu, H., Luo, Y., & Feng, L. (2014). Effects of Hydrolysates from Silver Carp (Hypophthalmichthys molitrix) Scales on Rancidity Stability and Gel Properties of Fish Products. Food and Bioprocess Technology, 7 (8), 2178-2188.
38.Nikoo, M., & Benjakul, S. (2015). Potential application of seafood-derived peptides as bifunctional ingredients, antioxidant–cryoprotectant: A review. Journal of Functional Foods, 19, 753-764.
39.Kudre, T., Benjakul, S., & Kishimura, H. (2013). Effects of protein isolates from black bean and mungbean on proteolysis and gel properties of surimi from sardine (Sardinella albella).
LWT - Food Science and Technology,
50 (2), 511-518.40.Tachasirinukun, P., Chaijan, M., & Riebroy, S. (2016). Effect of setting conditions on proteolysis and gelling properties of spotted featherback (Chitala ornata) muscle. LWT - Food Science and Technology, 66, 318-323.
41.Wang, L. L., & Xiong, Y. L. (2005). Inhibition of Lipid Oxidation in Cooked Beef Patties by Hydrolyzed Potato Protein Is Related to Its Reducing and Radical Scavenging Ability. Journal of Agricultural and Food Chemistry,
53 (23), 9186-9192.