The effect of different levels of water turbidity on growth performance and immune response, oxidative stress and salinity stress resistance in the Caspian roach (Rutilus caspius)

Document Type : scientific research article

Authors

1 Corresponding Author, Assistant Prof., Dept. of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavos University, Gonbad Kavos, Iran.

2 Assistant Prof., Dept. of Biology, Faculty of Basic and Engineering, Gonbad Kavos University, Gonbad Kavos, Iran.

3 M.Sc., of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavos University, Gonbad Kavos, Iran.

Abstract

Turbidity is significant contributors to declines in populations of aquatic organisms. The aim of the present study was to investigate the effects of different levels of water turbidity on the growth performance, immune and antioxidant response of Rutilus caspius. A total number of 360 Caspian roach (with average weight 0.75± 0.052 g) randomly in 4 treatments and 3 repetitions in 12 tanks with concentrations of 0, 250, 500, 1000 mg L−1 (C0, C1, C2 and C3 respectively) was distributed for 40 days. Then the fish were subjected to salinity stress (13 g L-1) for 48 hours. The results showed that water turbidity significantly decreased growth performance and feed efficiency (P< 0.05). Total immunoglobulin and lysozyme activity in the control had a significant increase compared to other treatments (P< 0.05). Cortisol concentration in turbidity of 500 and 1000 mg SS L−1 (C2 and C3) had a significant increase compared to other experimental treatments (P< 0.05). Water turbidity significantly decreased tissue superoxide dismutase and glutathione peroxidase, but increased tissue malondialdehyde concentration (P< 0.05). Based on the obtained results, water turbidity with concentrations of 500, 1000 mg L−1 can reduce the physiological response and resistance of Rutilus caspius against salinity stress.

Keywords

Main Subjects


1.Henley, W. F., Patterson, M. A., Neves, R. J., & Lemly, A. D. (2000). Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science, 8(2), 125-139.2.Chaparro-Herrera, D. J., Nandini, S., & Sarma, S. S. S. (2020). Turbidity effects on feeding by larvae of the endemic Ambystoma mexicanum and the introduced Oreochromis niloticus in Lake Xochimilco, Mexico. Ecohydrology & Hydrobiology, 20 (1), 91-101.3.De Robertis, A., Ryer, C. H., Veloza, A., & Brodeur, R. D. (2003). Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences, 60 (12), 1517-1526.4.Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, I. (2011). The impacts of fine sediment on riverine fish. Hydrological processes, 25 (11), 1800-1821.5.AC, U. P. (2002). Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar. Fresh. Behav. Physiol. 35, 111-128.6.Gliwicz, Z. M. (2003). Between hazards of starvation and risk of predation. The Ecology of Offshore Animals. Ecology Institute, Oldendorf/Luhe.7.Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water research, 42 (12), 2849-2861.8.Hasenbein, M., Fangue, N. A., Geist, J., Komoroske, L. M., Truong, J., McPherson, R., & Connon, R. E. (2016). Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species. Conservation Physiology, 4 (1), cow004.9.Rubio, V. C., Sánchez-Vázquez, F. J., & Madrid, J. A. (2005). Effects of salinity on food intake and macronutrient selection in European sea bass. Physiology & behavior, 85 (3), 333-339.10.Cataldi, E., Di Marco, P., Mandich, A., & Cataudella, S. (1998). Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 121 (4), 351-354.11.Mohiseni, M., Banaee, M., & Farabi, S. M. V. (2016). Effects of feed deprivation on chloride cell development in kuttum fish (Rutilus frisii kuttum) during sea water challenge. Journal of Aquatic Ecology, 5 (4), 88-97. [Translated in Persian]
12.Almeida, Â., Calisto, V., Esteves, V. I., Schneider, R. J., Soares, A. M., Figueira, E., & Freitas, R. (2017). Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. Science of the Total Environment, 601, 793-801.13.Cortes-Diaz, M. J. A., Rodríguez-Flores, J., Castañeda-Peñalvo, G., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., & Gómez-Oliván, L. M. (2017). Sublethal effects induced by captopril on Cyprinus carpio as determined by oxidative stress biomarkers. Science of the Total Environment, 605, 811-823.14.Maritim, A. C., Sanders, A., & Watkins Iii, J. B. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology, 17 (1), 24-38.15.Rice-Evans, C. A., & Burdon, R. H. (Eds.). (1994). Free Radical Damage and Its Control. Elsevier. 113, 46-49.16.Suzuki, J., Imamura, M., Nakano, D., Yamamoto, R., & Fujita, M. (2018). Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. Science of the total environment, 630, 1078-1085.17.Rezania, N., Hasani Zonoozi, M., & Saadatpour, M. (2021). Turbidity removal from water using Graphene Oxide as coagulant and modeling with artificial neural network. Journal of Environmental Science and Technology, 23 (8), 1-17.18.Adineh, H., Naderi, M., Harsij, M., Shirangi, S. A., Yousefi, M., & Hoseinifar, S. H. (2023). Interactive effects of culture systems (biofloc and clear water) and dietary protein levels on growth, digestive activity, mucosal immune responses, antioxidant status, and resistance against salinity stress in the Caspian roach (Rutilus caspicus) fry. Aquaculture, 570, 739418.19.Amin, N., Shirangi, S. A., Kashiri, H., Jafaryan, H., & Adineh, H. (2022). Effects of abrupt and gradual transfer methods to the salinity of the Caspian Sea onion regulation, some of immunity responses and stress indices in Caspian Roach (Rutilus caspicus, Yakovlev 1870). Fisheries Science and Technology, 11 (1), 42-54. [Translated in Persian]
20.Ellis, A. E. (1990). Lysozyme Assays: In: Stolen, J. S., Fletcher, T. C., Anderson, D. P., Roberson, B. S., Van Muiswinkel, W. B., editors. Techniques in: Fish Immunology. Fair Haven. NJ: SOS Publications, 101, 103.21.Naemi, R., Shirangi, S. A., Adineh, H., & Kashiri, H. (2021). The effect of short-term food deprivation and re-feeding on the resistance of juvenile Caspian roach, Rutilus caspicus to the salinity of the Caspian Sea: growth performance, stress indices and immune response. Aquatic Animals Nutrition, 7 (2), 11-25. [Translated in Persian]
22.Sunyer, J. O., & Tort, L. (1995). Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Veterinary Immunology and Immunopathology, 45 (3-4), 333-345.23.Borges, A., Scotti, L. V., Siqueira, D. R., Jurinitz, D. F., & Wassermann, G. F. (2004). Hematologic and serum biochemical values for jundiá (Rhamdia quelen). Fish physiology and biochemistry, 30, 21-25.24.Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, 47 (3), 469-474.25.Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica chimica acta, 196 (2-3), 143-151.26.Baluchnejadmojarad, T., Roghani, M., & Mafakheri, M. (2010). Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: involvement of estrogen receptors and oxidative stress. Neuroscience letters, 480 (3), 206-210.27.Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82 (1), 70-77.28.Affandi, F. A., & Ishak, M. Y. (2019). Impacts of suspended sediment and metal pollution from mining activities on riverine fish population-a review. Environmental Science and Pollution Research, 26, 16939-16951.29.Rodrigues, J. N., Ortega, J. C., Petsch, D. K., Padial, A. A., Moi, D. A., & Figueiredo, B. R. (2023). A meta-analytical review of turbidity effects on fish mobility. Reviews in Fish Biology and Fisheries, 1-15.30.Meager, J. J., Domenici, P., Shingles, A., & Utne-Palm, A. C. (2006). Escape responses in juvenile Atlantic cod Gadus morhua L.: the effects of turbidity and predator speed. Journal of Experimental Biology, 209 (20), 4174-4184.31.Fanouraki, E., Divanach, P., & Pavlidis, M. (2007). Baseline values for acute and chronic stress indicators in sexually immature red porgy (Pagrus pagrus). Aquaculture, 265 (1-4), 294-304.32.Saurabh, S., & Sahoo, P. K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture research, 39 (3), 223-239.33.Urbina, M. A., & Glover, C. N. (2015). Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). Journal of experimental marine biology and ecology, 473, 7-15.34.Aksakal, E., Ekinci, D., Erdoğan, O., Beydemir, Ş., Alım, Z., & Ceyhun, S. B. (2011). Increasing stocking density causes inhibition of metabolic–antioxidant enzymes and elevates mRNA levels of heat shock protein 70 in rainbow trout. Livestock Science, 141 (1), 69-75.