1.Abdollahzadeh, E. (2016). The prevalence of serotypes and virulence genes of Listeria monocytogenes in seafood products and studying the effect of ZnO nanoparticles on isolated strains. Gorgan University of Agricultural Sciences and Natural Resources. PhD thesis. 184p. [In Persian]
2.Pouillot, R., & Lubran, M. B. (2011). Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why. Food Microbiology, 28 (4), 720-726.3.Chen, Q., Zhao, Z., Wang, X., Xiong, K., & Shi, C. (2022). Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process. Innovative Food Science & Emerging Technologies, 75, 102912.4.Abdollahzadeh, E., Hosseini, H., Ojagh, S. M., Koushki, M. R., & Moghaddam, L. A. (2021). Secondary modeling and strain variability of Listeria monocytogenes isolated from seafood and clinical samples at various environmental conditions using high-throughput turbidity method. Applied Food Biotechnology, 8 (3), 225-236.5.Abdollahzadeh, E., Ojagh, S. M., Hosseini, H., Irajian, G., & Ghaemi, E. A. (2017). Predictive modeling of survival/ death of Listeria monocytogenes in liquid media: Bacterial responses to cinnamon essential oil, ZnO nanoparticles, and strain. Food Control, 73, 954-965.6.Hansen, T. B., Abdalas, S., Al-Hilali, I., & Hansen, L. T. (2021). Predicting the effect of salt on heat tolerance of Listeria monocytogenes in meat and fish products. International Journal of Food Microbiology, 352, 109265.7.Castillejo-Rodriguez, A. M., Gimeno, R. G., Cosano, G. Z., Alcalá, E. B., & Pérez, M. R. (2002). Assessment of mathematical models for predicting Staphylococcus aureus growth in cooked meat products. Journal of Food Protection, 65 (4), 659-665.8.Werlang, G. O., Vieira, T. R., Cardoso, M., & de Freitas Costa, E. (2021). Application of a predictive microbiological model for estimation of Salmonella behavior throughout the manufacturing process of salami in environmental conditions of small-scale Brazilian manufacturers. Microbial Risk Analysis, 19, 100177.9.Sagdic, O., & Ozturk, I. (2014). Kinetic modeling of Escherichia coli O157: H7 growth in rainbow trout fillets as affected by oregano and thyme essential oils and different packing treatments. International Journal of Food Properties, 17 (2), 371-385.10.Stavropoulou, E., & Bezirtzoglou, E. (2019). Predictive modeling of microbial behavior in food. Foods, 8 (12), 654.11.McMeekin, T., & Ross, T. (2002). Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, 78 (1), 133-153.12.Membre, J. M., & Lambert, R. J. (2008). Application of predictive modelling techniques in industry: From food design up to risk assessment. International Journal of Food Microbiology, 128, 10-15.13.Dalgaard, P. (1995). Modelling of microbial activity and prediction of shelf life for packed fresh fish. International Journal of Food Microbiology, 26 (3), 305-317.14.Taoukis, P. S., Koutsoumanis, K., & Nychas, G. J. E. (1999). Use of time–temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53 (1), 21-31.15.Carrascosa, C., Millán, R., Saavedra, P., Jaber, J. R., Montenegro, T., Raposo, A., ... & Sanjuán, E. (2014). Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) stored in ice. International Journal of Food Science & Technology, 49 (2), 354-363.16.Tsironi, T., Stamatiou, A., Giannoglou, M., Velliou, E., & Taoukis, P. S. (2011). Predictive modelling and selection of time temperature integrators for monitoring the shelf life of modified atmosphere packed gilthead seabream fillets. LWT-Food Science and Technology, 44 (4), 1156-1163.17.Powell, S. M., Ratkowsky, D. A., & Tamplin, M. L. (2015). Predictive model for the growth of spoilage bacteria on modified atmosphere packaged Atlantic salmon produced in Australia. Food microbiology, 47, 111-115.18.Jia, Z., Li, C., Fang, T., & Chen, J. (2019). Predictive Modeling of the Effect of ε‐Polylysine Hydrochloride on Growth and Thermal Inactivation of Listeria monocytogenes in Fish
Balls. Journal of Food Science, 84 (1), 127-132.19.Fernandez-Piquer, J., Bowman, J. P., Ross, T., & Tamplin, M. L. (2011). Predictive models for the effect of storage temperature on Vibrio parahaemolyticus viability and counts of total viable bacteria in Pacific oysters (Crassostrea gigas). Applied and Environmental Microbiology, 77 (24), 8687-8695.20.Kim, J. Y., Jeon, E. B., Song, M. G., Park, S. H., & Park, S. Y. (2022). Development of predictive growth models of Aeromonas hydrophila on raw tuna Thunnus orientalis as a function of storage temperatures. LWT, 156, 113052.21.Dabadé, D. S., Azokpota, P., Nout, M. R., Hounhouigan, D. J., Zwietering, M. H., & den Besten, H. M. (2015). Prediction of spoilage of tropical shrimp (Penaeus notialis) under dynamic temperature regimes. International Journal of Food Microbiology, 210, 121-130.22.Giuffrida, A., Valenti, D., Giarratana, F., Ziino, G., & Panebianco, A. (2013). A new approach to modelling the shelf life of Gilthead seabream (Sparus aurata). International Journal of Food Science & Technology, 48 (6), 1235-1242.23.Ying, X., Zinnai, A., Venturi, F., Sanmartin, C., & Deng, S. (2017). Freshness evaluation of grass carp (Ctenopharyngodon idella) by electronic nose. Journal of Food Measurement and Characterization, 11, 1026-1034.24.Genç, I. Y., & Diler, A. (2019). Development of shelf life prediction model in rainbow trout stored at different temperatures. Journal of Aquatic Food Product Technology, 28 (10), 1027-1036.25.Mavani, N. R., Ali, J. M., Othman, S., Hussain, M. A., Hashim, H., & Rahman, N. A. (2022). Application of artificial intelligence in food industry-a guideline. Food Engineering Reviews, 14 (1), 134-175.26.Metekia, W. A., & Ulusoy, B. H. (2023). Antimicrobial activity of Spirulina platensis extract on total mesophilic and psychrophilic bacteria of fresh tilapia fillet. Scientific Reports, 13 (1), 13081.