Comparison of the effect of adding different nanoparticles on the physical and mechanical properties of the protein film extracted from lantern fish

Document Type : scientific research article

Authors

1 Ph.D. Student of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Corresponding Author, Associate Prof., Dept. of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Prof., Dept. of Biology and Biological Engineering Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden

4 Associate Prof., Dept. of Seafood Processing, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

In this research, the comparison of the effect of adding nanoparticles (clay, chitosan, TiO2 and bacterial nanocellulose) separately on the physical, mechanical and optical properties of the film prepared from the lantern fish protein was investigated. To prepare nanocomposite films, nanoparticles were added separately at 1 and 3% levels to the protein film solution extracted from the lantern fish. The results showed that with the addition of nanoparticles in the polymer substrate, the tensile strength of all films showed a significant increase. Elongation at breaking point in films containing nanoparticles of clay, TiO2 and bacterial cellulose increased significantly and the water vapor permeability improved in films containing nanoparticles (clay, cellulose and TiO2). Also, the moisture content of the films increased with the addition of nanoparticles and the solubility values showed a significant increase in the rest of the films containing nanoparticles, except for cellulose nanoparticles. The opacity of the films also increased with the addition of nanoparticles.

Keywords

Main Subjects


1.Ferreira, A. R., Alves, V. D., & Coelhoso, I. M. (2016). Polysaccharide-based membranes in food packaging applications. Membranes, 6(2), 22.
2.Young, E., Mirosa, M., & Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, 63.
3.Robertson, G. (2016). Chapter 7. Metal packaging materials. In (pp. 189-228): CRC Press.
4.Alves, V., Costa, N., Hilliou, L., Larotonda, F., Gonçalves, M., Sereno, A., & Coelhoso, I. (2006). Design of biodegradable composite films for food packaging. Desalination, 199(1-3), 331-333.
5.Salvatore, M., Marra, A., Duraccio, D., Shayanfar, S., Pillai, S. D., Cimmino, S., & Silvestre, C. (2016). Effect of
electron beam irradiation on the properties of polylactic acid/ montmorillonite nanocomposites for food packaging applications. Journal of Applied Polymer Science, 133(2).
6.Khalil, H., Tye, Y., Saurabh, C., Leh, C., Lai, T., Chong, E., Fazita, M., Hafiidz, J. M., Banerjee, A., & Syakir, M. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters, 11(4).
7.Salgado, P. R., Ortiz, C. M., Musso, Y. S., Di Giorgio, L., & Mauri, A. N. (2015). Edible films and coatings containing bioactives. Current Opinion in Food Science, 5, 86-92.
8.Tomadoni, B., Capello, C., Valencia, G. A., & Gutiérrez, T. J. (2020). Self-assembled proteins for food applications: A review. Trends in Food Science & Technology, 101, 1-16.
9.Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol)(PVA) on properties of fish myofibrillar protein/ PVA blend films. Food Hydrocolloids, 29(1), 226-233.
10.Pires, C., Ramos, C., Teixeira, G., Batista, I., Mendes, R., Nunes, L., & Marques, A. (2011). Characterization of biodegradable films prepared with hake proteins and thyme oil. Journal of Food Engineering, 105(3), 422-428.
11.Othman, S. H., Nordin, N., Azman, N. A. A., Tawakkal, I. S. M. A., & Basha, R. K. (2021). Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films. International journal of biological macromolecules, 183, 1352-1361.
12.Kuswandi, B., & Moradi, M. (2019). Improvement of food packaging based on functional nanomaterial. Nanotechnology: applications in energy, drug and food, 309-344.
13.Yang, H. C., Wang, W. H., Huang, K. S., & Hon, M. H. (2010). Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties. Carbohydrate Polymers, 79 (1), 176-179.
14.Ukhtezari, S., Almasi, H., Pirsa, S., Zandi, M., & Pirouzifard, M. (2017). Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract. Carbohydrate Polymers, 156, 340-350.
15.Jia, H., Jia, Y., Wang, J., Hu, Y., Zhang, Y., & Jia, S. (2009, October). Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In 2009 2nd International Conference on Biomedical Engineering and Informatics (pp. 1-5). IEEE.
16.Liyaskina, E., Revin, V., Paramonova, E., Nazarkina, M., Pestov, N., Revina, N., & Kolesnikova, S. (2017). Nanomaterials from bacterial cellulose for antimicrobial wound dressing. Journal of Physics: Conference Series.
17.Nordin, N., Othman, S., Kadir Basha, R., & Abdul Rashid, S. (2018). Mechanical and thermal properties of starch films reinforced with microcellulose fibres.
18.Slavutsky, A. M., Bertuzzi, M. A., Armada, M., García, M. G., & Ochoa, N. A. (2014). Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocolloids, 35, 270-278.
19.Fabra, M., Jiménez, A., Atarés, L., Talens, P.,&  Chiralt, A. (2009). Effect of fatty acids and beeswax addition on properties of sodium caseinate dispersions and films. Biomacromolecules, 10(6), 1500-1507.
20.Alexandre, M., & Dubois, P. (2003). Mater Sci. Eng. Rep. 2000, 28, 1-63.(c) Ray, SS; Okamoto, M. Prog. Polym. Sci. 28, 1539-1641.
21.Ali, I., Suhail, M., Alothman, Z. A., & Alwarthan, A. (2018). Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC advances,8 (53), 30125-30147.
22.Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.
23.Vejdan, A., Ojagh, S. M., Adeli, A., & Abdollahi, M. (2016). Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT-Food Science and Technology, 71, 88-95.
24.Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104.
25.He, Q., Zhang, Y., Cai, X., & Wang, S. (2016). Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties. International journal of biological macromolecules, 84, 153-160.
26.De Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448-453.
27.de Moura, M. R., Lorevice, M. V., Mattoso, L. H., & Zucolotto, V. (2011). Highly stable, edible cellulose films incorporating chitosan nanoparticles. Journal of food science, 76(2), 25-29.
28.Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.
29.Pereda, M., Amica, G., Rácz, I., & Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103(1), 76-83.
30.Atef, M., Rezaei, M., & Behrooz, R. (2014). Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. International journal of biological macromolecules, 70, 537-544.
31.Reddy, J. P., & Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480-488.
32.Memiş, S., Tornuk, F., Bozkurt, F., & Durak, M. Z. (2017). Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International journal of biological macromolecules, 103, 669-675.
33.Alexandre, E. M. C., Lourenço, R. V., Bittante, A. M. Q. B., Moraes, I. C. F., & do Amaral Sobral, P. J. (2016). Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10, 87-96.
34.Farahnaky, A., Dadfar, S. M. M., & Shahbazi, M. (2014). Physical and mechanical properties of gelatin–clay nanocomposite. Journal of Food Engineering, 122, 78-83.
35.ASTM. (2002). Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material. Philadelphia, PA.
36.ASTM. (1995). Standard test method for water vapour transmission of materials (E 96–95). Annual Book of American Standard Testing Methods, 719-725.
37.Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
38.Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., & Gastaldi, E. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. Journal of membrane science, 289(1-2), 159-168.
39.(Ge et al., 2018).
40.de Matos Fonseca, J., Valencia, G. A., Soares, L. S., Dotto, M. E. R., Campos, C. E. M., Moreira, R. d. F. P. M., & Fritz, A. R. M. (2020). Hydroxypropyl methylcellulose-TiO2 and gelatin-TiO2 nanocomposite films: Physicochemical and structural properties. International journal of biological macromolecules, 151, 944-956.
41.Mir, S. A., Dar, B., Wani, A. A., & Shah, M. A. (2018). Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends in Food Science & Technology, 80, 141-154.
42.Poonguzhali, R., Basha, S. K., & Kumari, V. S. (2017). Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. International journal of biological macromolecules, 105, 111-120.
43.Haghighi, H., Leugoue, S. K., Pfeifer, F., Siesler, H. W., Licciardello, F., Fava, P., & Pulvirenti, A. (2020). Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100, 105419.