Evaluation of the response surface methodology on melting point and gelling temperature of carrageenan from Hypnea flagelliformis

Document Type : scientific research article

Authors

1 Ph.D. Student in Sea Food Processing, Faculty of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Corresponding Author, Associate Prof., Dept. of Sea Food Processing, Faculty of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Prof., Dept. of Sea Food Processing, Faculty of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Carrageenan is a marine biopolymer that can be extracted from cell wall of some red carrageenophyte. In this present, response surface methodology was used to investigate the procedure of carrageenan melting point and gelling temperature from algae of Hypnea flagelliformis. Independent variables, alkalinity concentration (0/25-2%), extraction temperature (70-90°C) and extraction time (60-240 minutes) were applied in five levels. all
Base on the result, effects of all independent variables on melting point were significant (p<0.05), whereas alkalinity concentration had significant effect on gelling temperature (p>0.05). Polynomial models developed for the melting point and gelling temperature indicated that optimum conditions. Optimum data for independent variables were alkalinity concentration 1.54%, temperature 85 °C and time 203 minutes.
Confirmatory test was earned as follows melting point 63.8 ±0.91 °C and gelling temperature 37.29 ±0 /62 °C. The experimental data and model forecasting were similar (P> 0.05).

Keywords

Main Subjects


1.Venkatesan, J., Anil, S., & Se-Kwon Kim. (2017). Seaweed Polysaccharides, Isolation, Biological and Biomedical Applications.
2.Dhewang, B., Yudiati, E., & Alghazeer, R. (2023). Carrageenan Extraction of Kappaphycus alvarezii Seaweed from Nusa Lembongan Waters Using Different Alkaline Treatments. Journal Kelautan Tropis, 26 (2), 238-244.
3.Chevenier, A., Jouanneau, D., & Ficko-Blean, E. (2023). Carrageenan biosynthesis in red algae: A review. The Cell Surface. 100097-100102.
4.Rupert, R., Rodrigues, K., Thien, V., & Yong, W. (2022). Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Frontiers in Plant Science.
5.Allison, G., & O’leary, N. (2016). Carrageenan gel air freshener: Google Patents.
6.Esmaeili, C., Heng, L. Y., Chiang, C. P., Rashid, Z. A., Safitri, E., & Marugan, R. S. P. M. (2017). A DNA biosensor based on kappa-carrageenan-polypyrrole-gold nanoparticles composite for gender determination of Arowana fish (Scleropages formosus). Sensors Actuat: B Chemical journal. 242, 616-624.
7.Ooi, L., Heng, L., Y., & Mori, I. C. (2015). A high-throughput oxidative stress biosensor based on Escherichia
coli
roGFP2 cells immobilized in a k-carrageenan matrix. Sensors.15 (2), 2354-2368.
8.Zhou, G., Sheng, W., Yao, W., & Wang, C. (2006). Effect of low molecular l-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research. 53, 129-134.
9.Caceres, P. J., Carlucci, M. J., Damonte, E. B., Matsuhiro, B., & Zuniga, E. A. (2000). Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry. 53, 81-86.
10.Rajasulochana, P., & Preethy, V. (2015). Biotechnological applications of marine red algae. Journal of Chemical and Pharmaceutical Research. 7(12), 477-481.
11.Rhein-Knudsen, N. A., Ale, M. T., & Meyer, A. S. (2015). Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Marine Drugs. DOI 10.3390/md13063340.
12.Hayashi, L., Oliveira, E. C., Bleicher-Lhonneur, G., Boulenguer, P., Pereira, R. T. L., Seckendorff, R. V., Shimoda, V. T., Leflamand, A., Vallée, P., & Critchley, A. T. (2007). The effects of selected cultivation conditions on the carrageenan characteristics of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, São Paulo, Brazil. Journal of Applied Phycology. 19, 505-511.
13.Bixler, H. J., & Porse, H. )2011(. A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology. 23, 321-335.
14.Youssouf, L., Lallemand, L., Giraud, P., Soulé, F., Bhaw-Luximon, A., Meilhac, O., D’Hellencourt C. L., Jhurry, D., & Couprie, J. (2017). Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydrate Polymers. 166, 55-63.
15.Rafiquzzaman, S. M., Ahmed, R., Lee, J. M., Noh, G., Jo, G., & Kong, S. (2015). Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. Journal of Applied Phycology.
16.Azevedo, G., Torres, D., Sousa-Pinto, L., & Hilliou, L. (2015). Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocolloids. 50, 150-158.
17.Webber, V., Carvalho, S. M., Ogliari, P. J., Hayashi, L., & Barreto, P. L. M. (2012). Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Ciência e Tecnologia de Alimentos. 32 (4), 812-818.
18.Mendoza, W. G., Ganzon-Fortes, E. T., Villanueva, R. V., Romero, R. V., & Montan˜o, M. N. E. (2006). Tissue age as a factor affecting carrageenan quantity and quality in farmed Kappaphycus striatum (Schmitz) Doty ex Silva. Botanica Marina. 49, 57-64.
19.Bezerraa, M. A., Santelli, R. E., Oliveira, E. P., Villar, S. L., & Escaleira, L. A. (2008). Review: Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76, 965-977.
20.Sousa, A. M. M., Alves, V. D., Morais, S., Delerue-Matos, C., & Gonçalves, M. P. )2010(. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Journal of Bioresource Technology. 101, 3258-3267.
21.Yasita, D., & Rachmawati, I. D. )2009(. [Optimization of Extraction Process in Making Carrageenan from Seaweed Eucheuma cottonii to Achieve Food Grade. http://eprints.undip.ac.id/3333/. Diakses 11 Maret.
22.Sari, K. D., Barleany, D., Lestari, R. S. D., & Mustikawat, L. )2010(. Extraction refined carrageenan using ultrasonic irradiation in from Kappaphycus Alvarezii originated from Lontar. Materials Science and Engineering, 673-681. DOI:10.1088/1757-899X/673/ 1/012015.
23.Chairani, L. (2019). The Alkali Concentration Effect on Quality of Semi Refined Carrageenan Production: A Meta-Analysis. Laela, Proceedings of the International Conference on Industrial Engineering and Operations Management Pilsen, Czech Republic, July 23-26.
24.Widiastuti, H. N. (2019). Effect of NaOH Concentration on Caragenan (Eucheuma cottonii) from Karimun Jawa and Madura, Agritech. 24 (4), 204-209.
25.Kumar, V., & Fotedar, R. (2009). Carrageenan extraction process for Hypnea cliftonii (Withell, Millar, & Kraft, 1994). Carbohydr. Polym. 78, 813-819.
26.La Ega, Lopulalan, Cynthia G. C., & Meiyasa, F. (2016). Study of Seaweed (Eucheuma cottonii) Carrageenan Quality based on Physicochemical Properties by Extraction using Different Potassium Hydroxide (KOH), Jurnal Aplikasi Teknologi Pangan. 5 (2), 38-44.
27.Al-Alawi, A., Al-Marhubi, A. A., Al-Belushi, I. M., & Bassam, M. S. M. (2011). Characterization of Carrageenan Extracted from Hypnea bryoides in Oman. Marine Biotechnology. 5, 893-899.
28.Freile-Pelegrín, Y., & Murano, E. )2005(. Carrageenans from three species of Hypnea (Rhodophyta) from Yucatan Peninsula. Bioresour. Technol. 96, 295-302.
29.Sahu, N., Meena, R., & Ganesan, M. (2011). Effect of grafting on the properties of kappa-carrageenan of the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva. Carbohydrate Polymers. 84, 584-592.
30.Zainab Mohammed Al-Nahdi, Z. M., Al-Alawi, A., & Al-Marhobi, I. (2019). The Effect of Extraction Conditions on Chemical and Thermal Characteristics of Kappa-Carrageenan extracted from Hypnea bryoides. Journal of Marine Biology. Doi.org/10.1155/ 2019/ 5183261.
31.Rodríguez, M. C., Matulewicz, M. C., Noseda, M. D., Ducatti, D. R. B., & Leonardi, P. L. )2009(. Carrageenan from Hypnea gracilis (Hypneales, Rhodophyta) of the Patagonic coast of Argentina – Content, structure and physical properties. Bioresour. Technol. 100, 1435-1441.
32.Falshaw, R., Furneaux, R. H., & Stevenson, D. E. (1998). Carrageenans from nine species of red seaweed
in the genus Curdiea (Hypneaceae, Rhodophyta). Carbohyd. Res. 308, 107-115.