Determining the trophic state of the reservoir behind the Boostan dam in Golestan province based on TSI index

Document Type : scientific research article

Authors

1 Corresponding Author, Researcher Expert, Inland Waters Aquatics Resources Research Center, Gorgan, Iran

2 Ph.D. Graduate of Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Researcher Expert, Inland Waters Aquatics Resources Research Center, Gorgan, Iran

4 Assistant Prof., Inland Waters Aquatics Resources Research Center, Gorgan, Iran

Abstract

The lake’s trophic state can well represent human disturbances on these ecosystems. The present study was conducted seasonally to investigate the trophy status of Bostan Dam Lake (Golestan Province) from spring 2019 to summer 2020 in five study stations. A number of physicochemical parameters were determined such as pH, electrical conductivity, temperature, dissolved oxygen concentration, Secchi disk depth, salinity, dissolved solids, total hardness and turbidity. While nitrate, phosphate, total nitrogen, total phosphorus, ammonia, total alkalinity and chlorophyll evaluated using standard method. Carlson's index, the amount of nutrition in different parts of the lake estimated based on total phosphuros, chlorophyll and transparency. The result of Carlson's index showed different values between 52.44 to 60.46 and eutrophic condition in lake. The present research can provide a decision support system in the future to achieve optimal monitoring and exploitation and water quality management of the reservoir behind the Bostan Dam.

Keywords

Main Subjects


1.Makhdoum, M. F. (1992). Environmental unit: an arbitrary ecosystem for land evaluation. Agriculture, ecosystems and environment. 41 (2), 209-214.
2.Sabkara, J., & Makaremi, M. (2003). The Density and distribution of the planktons, in Maco reservoir dam. Iranian Scentific Fisheries Journal. 12 (2), 29-46.
3.FAO. (2010). FISHSTAT plus. Food and Agricluture Organization of United Nations, Rome, Italy. 180p.
4.Chen, Q., Zhao, J., Gao, Q., Liu, H., & Han, X. (2021). Trophic state footprint index model and its application to Dianchi Lake, China. Ecological Indicators. (132): p.108317.
5.Schaffer, J. (2010). The internal relatedness of all things. Mind. 119 (474), 341-376.
6.Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography. 22 (2), 361-396.
7.Frost, J. R., Phlips, E. J., Fulton Iii, R. S., Schelske, C. L., Kenney, W., & Cichra, M. (2008). Temporal trends of trophic state variables in a shallow hypereutrophic subtropical lake, Lake Griffin, Florida, USA. Fundamental and applied limnology. 172 (4), p. 263.
8.Neto, R. M., & Ostrensky, A. (2015). Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquaculture Research. 46 (6), 1309-1322.
9.Saluja, R., & Garg, J. K. (2017). Trophic state assessment of Bhindawas Lake, Haryana, India. Environmental Monitoring and Assessment. 189 (1), 1-15.
10.Mahmudi, M., Lusiana, E. D., Arsad, S., Buwono, N. R., Darmawan, A., Nisya, T. W., & Gurinda, G. A. (2019). A study on phosphorus-based carrying capacity and trophic status index of floating net cages area in Ranu Grati, Indonesia. Aquaculture, Aquarium, Conservation and Legislation. 12 (5), 1902-1908.
11.Sawestri, S., Suryati, N. K., & Muthmainnah, D. (2021). Determination of potential fisheries areas based on trophic status (case study in situ Gede, Tasikmalaya). Depik. 10 (2), 91-97.
12.Chen, S. Z., Wang, X. J., & Zhao, X. J. (2008). An attribute recognition model based on entropy weight for evaluating the quality of groundwater sources. Journal of China University of mining and technology. 18 (1), 72-75.
13.Carlson, R. E., & Havens, K. E. (2005). Simple Graphical Methods for the Interpretation of Relationships between Trophic State Variables. Lake Reserv. Manage. 21 (1), 107-118.
14.Bahrami, S. A. (2009). Investigating the effects of land use change on the hydrological characteristics of Boostan dam watershed, Golestan province using hec-hms model. MSc thesis. Gorgan University of Agricultural Sciences and Natural Resources. 161p.
15.Bahrami, S., Onagh, M., & Farazhoo, H. (2011). The role of flood routing in determination and prioritizing hydrologic units Bostan dam basin from flooding and showing management technique. Journal of Water and Soil Resources Conservation. 1(1-1), 10-26.
16.Putrandy, C. S., Zahidah, H. H., & Herawati, H. (2021). Determination of the trophic status of Jatigede reservoir using the trophic state index method. 9 (4), 249-254.
17.Miner, G. (2006). Standard methods for the examination of water and wastewater. American Water Works Association. Journal. 98 (1), p.130.
18.Matthews, R., Hilles, M., & Pelletier, G. (2002). Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation. Hydrobiologia. 468, 107-121.
19.Lin, S. S., Shen, S. L., Zhou, A., & Lyu, H. M. (2021). Assessment and management of lake eutrophication: a case study in Lake Erhai, China. Sci. Total Environ. 751, 141618.
20.Bomfim, E. D. O, Kraus, C. N., & Lobo, M. T. (2019). Trophic state index validation based on the phytoplankton functional group approach in Amazon floodplain lakes. Inland Waters. 9, 309-319.
21.Sharma, M. P., Kumar, A., & Rajvanshi, S. (2010). Assessment of trophic state of lakes: a case of Mansi Ganga Lake in India. Hydro Nepal: Journal of Water, Energy and Environment. 6, 65-72.
22.Lewandowski, V., Bridi, V. R. C., Bittencourt, F., Signor, A., Boscolo, W. R., & Feiden, A. (2018). Spatial and temporal limnological changes of an aquaculture area in a neotropical reservoir. In Annales de Limnologie-International Journal of Limnology. EDP Sciences. (54), p 27.
23.Sá, A. K. D. D. S., Cutrim, M. V. J., Costa, D. S., Cavalcanti, L. F., Ferreira, F. S., Oliveira, A. L. L., & Serejo, J. H. F. (2021). Algal blooms and trophic state in a tropical estuary blocked by a dam (northeastern Brazil). Ocean and Coastal Research. 69, 1-16.
24.Mirzajani, A. (2008). Evaluation of the reservoir behind Shuvir and Mirzakhanlu dams in Zanjan province for the possibility of aquaculture. Organization of Agriculture- Jahad- Zanjan Province. 90 p.
25.Sabkara, J., & Makaremi, M. (2013). The density and distribution of the plankton, and their role in fish culture in Aras reservoir dam. Journal of Aquaculture Development. 7 (2), 41-59.
26.Abdolmaleki, Sh., Mirzajani, A., Khodaparast, H., Saberi, H., Babaye, H., Sabkara, J., Makaremi, M., Nowrouzi, H., Behmanesh, Sh., Khedmati, K., Nehrour, M., Ghane, A., Mehdizadeh, Gh., Mahisefat, F., Nikpour, M., Rastin, R., Mohsenpour, H., Sayad-Rahim., M., Shoundast,. J., Maddadi, F., Sedaghatkish, A., Khoshhal., J., Iranpour, M., & Rouhbani., Sh. (2014). The study of Khandaqlou dam in Mahneshan city, Zanjan province. Agricultural Research, Education and Extension Organization. 202 p.
27.Boyd, C. E., & Tuker, C. S. (1998). Pond aquaculture water quality management. Kluwer Academic Publisher, London. 700 p.
28.Poursoufi, T., Mansouri, B., & Gharanjik, B. 2020. Biological conditions of Golestan dam reservoir based on primary production. New Technologies in Aquaculture Development. 14 (3), 44-55.