1.Gabriel, U. U., Akinrotimi, O. A., Bekibele, D. O., Onunkwo, D. N., & Anyanwu, P. E. (2007). Locally produced fish feed: potentials for aquaculture development in subsaharan Africa. African Journal of Agricultural Research, 2 (7), 287-295.
3.Luo, G. Z., Avnimelech, Y., Pan, Y. F., & Tan, H. X. (2013). Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural engineering, 52, 73-79.
4.Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C.,Clay, J., Folke, C., Lubchenco, J., Mooney, H., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405 (6790), 1017-1024.
5.Sinha, A. K., Kumar, V., Makkar, H. P., De Boeck, G., & Becker, K. (2011).Non-starch polysaccharides and theirrole in fish nutrition–A review. Food Chemistry, 127 (4), 1409-1426.
6.Gracia, M. I., Aranibar, M., Lazaro, R., Medel, P., & Mateos, G. G. (2003). Alpha-amylase supplementation of broiler diets based on corn. Poultry science,82 (3), 436-442.
7.Maas, R. M., Verdegem, M. C., & Schrama, J. W. (2019). Effect of non‐starch polysaccharide composition and enzyme supplementation on growth performance and nutrient digestibility in Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 25 (3), 622-632.
8.Hlophe‐Ginindza, S. N., Moyo, N. A., Ngambi, J. W., & Ncube, I. (2016).The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu‐based diets. Aquaculture Research,47 (12), 3777-3787.
9.Rosadi, E., Yuli, E. H., Setyohadi, D.,& Bintoro, G. (2014). Distribution, composition, and abiotic environment of Silver Rasbora (Rasbora argyrotaenia Blkr) fish in upstream areas of Barito watershed, South Kalimantan. Journal of Environment and Ecology, 5 (1), 117.
10.Zutshi, B., & Prasad, S. R. (2008). Impact of pollution on fresh-and marine water resources-A review. Pollution Research, 27 (3), 461-466.
11.Bogut, I., Opacak, A., & Stevic, I. (1995). The influence of polyzymes added to the food on the growth of carp fingerlings (Cyprinus carpio L.). Aquaculture, 129 (1-4), 252-252.
12.Prabu, E., Rajagopalsamy, C. B. T., Ahilan, B., Santhakumar, R., Jeevagan, I. J. M. A., & Renuhadevi, M. (2017). An overview of anti-nutritional factors in fish feed ingredients and their effects in fish. Journal of Aquaculture in the Tropics, 32 (1/2), 149.
13.Brufau, J., Francesch, M., & Pérez‐Vendrell, A. M. (2006). The use of enzymes to improve cereal diets for animal feeding. Journal of the Science of Food and Agriculture, 86 (11), 1705-1713.
14.Walk, C. L., & Bedford, M. R. (2020). Application of exogenous enzymes: is digestibility an appropriate response variable?. Animal Production Science, 60 (8), 993-998.
15.Subramanian, A., & Balasubramanian, U. (2014). Effect of spirulina on growth and biochemical performance in common carp Catla catla and Labeo rohita. International Journal of Research in Fisheries and Aquaculture. 1, 1-10.
16.Biabani, M., Soudager, M., Mazandarani, M., & Yusefi, S. (2016). The effect of spirulina powder on the growth, survival, total carotenoid of pre-moldo fish in the larval stage of dwarf gourami fish (Trichogaster lalius). Fisheries Science and Technology,6 (1), 21-35. [In Persian]
17.Ovando, C. A., Carvalho, J. C. D., Vinícius de Melo Pereira, G., Jacques, P., Soccol, V. T., & Soccol, C. R. (2018). Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food reviews international, 34 (1), 34-51.
18.Nege, A. S., Masithah, E. D., & Khotib, J. (2020). Trends in the Uses of Spirulina Microalga: A mini-review. Journal Ilmiah Perikanan dan Kelautan, 12 (1), 149-166.
19.Balon, E. K. (1995). Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture,129 (1-4), 3-48.
20.Zakariaee, H., Sodagar, M., Hosseini, S., Paknejad, H., & Baroah, K. (2019). The effect of using a synbiotic produced from button mushroom extract in combination with two species of lactic acid bacteria on the activity of digestive enzymes, carcass composition, growth and intestinal microbial flora in zebra fish (Danio rerio). Marine science and technology. [In press]. 10.22113/jmst. 2020.233183.237. [In Persian]
21.Sodagar, M., Khalsa, M., Mazandarani, M., Hosseini, A., & Zakariaee, H. (2016). The effect of Spirulina sp on the growth, survival and pigmentation of Pseudotropheus demasoni. Journal of Fisheries, Journal of Natural Resources of Iran, 69 (1), 21-27. [In Persian]
22.Adelian, M., Imanpour, M., Taghizadeh, V., & Mazandarani, M. (2015). The use of natozyme multi-enzyme in the diet of common carp (Cyprinus carpio) and its effects on growth indices and some blood biochemical factors. Animal Environment, 8 (2), 207-214. [In Persian]
23.Moustafa, E. S., Alsanie, W. F., Gaber, A., Kamel, N. N., Alaqil, A. A., & Abbas, A. O. (2021). Blue-green algae (Spirulina platensis) alleviates the negative impact of heat stress on broiler production performance and redox status. Animals, 11 (5), 1243.
24.De Almeida Bicudo, A. J., Sado, R. Y., & Cyrino, J. E. P. (2009). Growth and haematology of pacu (Piaractus mesopotamicus) fed diets with varyingprotein to energy ratio. Aquaculture Research. 40, 486-495.
25.Tacon, A. G. J. (2001). Effect of brood-stock nutrition on reproductive performance of fish. Aquaculture. 197, 25-42.
26.Bekcan, S., Dogankaya, L., & Cakirogullari, G. C. (2006). Growth and body composition of European catfish (Silurus glanis L.) fed diets containing different percentages of protein. Israeli journal of aquaculture = Bamidgeh.
58 (2), 137-142.
27.Hevrøy, E., Espe, M., Waagbø, R., Sandnes, K., Ruud, M., & Hemre, G. I. (2005). Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolyte during a period of fast growth. Aquaculture Nutrition. 11, 301-313.
28.Ai, Q., Mai, K., Tan, B., Xu, W.,Duan, Q., Ma, H., & Zhang, L. (2006). Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea. Aquaculture. 260, 255-263.
29.Adegoke, A. M., Gbadegesin, M. A., Otitoju, A. P., & Odunola, O. A. (2015). Hepatotoxicity and Genotoxicity of Sodium Arsenite and Cyclophosphamide in Rats: Protective Effects of Aqueous Extract of Adansonia digitata L. Fruit Palp. British Journal of Medicine & Medical Research, 8 (11), 963-974.
30.Ross, N. W., Firth, K. J., Wang, A., Burka, J. F., & Johnson, S. C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Diseases of aquatic organisms, 41 (1), 43-51.
31.Farhang, P., Mirvaqfi, A. R., & Majaji Amiri, B. (2017). The effect of oxytetracycline antibiotic on the blood parameters of rainbow trout (Oncorhynchus mykiss) suffering from aeromoniasis and the effect of using butyl hydroxytoluene in improving the side effects of antibiotic treatment. Fisheries, Journal of Natural Resources of Iran, 71 (3), 216-224. (In Persian)
32.Mohammad Rezaei, D. (2019). Investigating the effect of spirulina algae powder and cloves on the growth performance and carcass composition of common carp fingerlings. Animal Environment, 12 (2), 189-194. [In Persian]
33.Sabrian Joybari, M., Ghobadi, Sh., & Watan-doost, P. (2016). The effect of different levels of prebiotic A-MAX on growth indices, survival and carcass composition in common carp fry. Aquaculture Development, 11 (1), 63-75. [In Persian]
34.Tokur, S., Ozkütük, E., Atici, G., Ozyurt, C. E., & Ozyur, E. (2006). The effects of frozen storage at -18 °C on the chemical and sensory qualities of fish fingers produced from unwashed and washed mirror carp (Cyprinus carpio) mince were investigated. The amounts of moisture, crude protein, lipid, crude ash, ω3 polyunsaturated. Food Chemistry. 151, 55-70.
35.Park, J. H., Lee, S. I., & Kim, I. H. (2018). Effect of dietary Spirulina (Arthrospira platensis) on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry science, 97 (7), 2451-2459.
36.Al-Batshan, H. A., Al-Mufarrej, S. I., Al-Homaidan, A. A., & Qureshi, M. A. (2001). Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharmacology and immunotoxicology, 23 (2), 281-289.
37.Meineri, G., Ingravalle, F., Radice, E., & Aragno, M. (2009). Effects of high fat diets and Spirulina Platensis supplementation in New Zealand White rabbit.
38.Sujatha, T., & Narahari, D. (2011). Effect of designer diets on egg yolk composition of ‘White Leghorn’hens. Journal of food science and technology, 48 (4), 494-497.
39.Evans, A. M., Smith, D. L., & Moritz,J. S. (2015). Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of applied poultry research, 24 (2), 206-214.
40.Jaime-Ceballos, B. J., Hernández-Llamas, A., Garcia-Galano, T., & Villarreal, H. (2006). Substitution of Chaetoceros muelleri by Spirulina platensis meal in diets for Litopenaeus schmitti larvae. Aquaculture, 260 (1-4), 215-220.
41.Lu, J., Yoshizaki, G., Sakai, K., & Takeuchi, T. (2002). Acceptability of raw Spirulina platensis by larval tilapia Oreochromis niloticus. Fisheries Science, 68 (1), 51-58.
42.Gogoi, S., Mandal, S. C., & Patel, A. B. (2018). Effect of dietary Wolffia arrhiza and Spirulina platensis on growth performance and pigmentation of Queen loach Botia dario (Hamilton, 1822). Aquaculture Nutrition, 24 (1), 285-291.
43.Alvarenga, R. R., Rodrigues, P. B., Cantarelli, V. D. S., Zangeronimo, M. G., Silva Júnior, J. W. D., Silva, L. R. D., Santos, L. M. D., & Pereira, L. J. (2011). Energy values and chemical composition of spirulina (Spirulina platensis) evaluated with broilers. Revista Brasileira de Zootecnia, 40 (5), 992-996.
44.Evans, A. M., Smith, D. L., & Moritz, J. S. (2015). Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of applied poultry research, 24 (2), 206-214.
45.Alofa, C. S., Adite, A., & Abou, Y. (2020). Evaluation of Spirulina (Spirulina platensis) wastes and live housefly (Musca domestica) larvae as dietary protein sources in diets of Oreochromis niloticus (Linnaeus 1758) fingerlings. Aquatic Research, 3 (1), 24-35.
46.Homayoni, M., Imanpour, M. R., & Safari, R. (2019). The effects of betaine and natozyme multienzyme in the diet on growth performance and expression of the growth hormone (GH) gene in common carp. Animal Physiology Research, 14 (3), 85-96. [In Persian]
47.Razeghi, M., Akrami, R., Ghobadi,S. H., Amani Denji, K., Ezatrahimi, N., & Gharaei, A. (2012). Effects of dietary manna oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso). Fish Physiology and Biochemistry. 38 (3), 829-835.
48.Adelian, M., Imanpour, M. R., & Jafari, V. (2018). The effects of natozyme multi-enzyme in the diet on the growth, survival and reproductive performance of goldfish. Animal Environment, 11 (2), 215-224. [In Persian]
49.Mousavi, M., Imanpour, M. R., & Safari, R. (2019). Effect of natozyme multi-enzyme and lactic acid pediococcus probiotic in diet on growth and hematological parameters in beluga (Huso huso). Animal Environment,12 (1), 223-228. [In Persian]
50.Farhangi, M., & Carter, C. G. (2007). Effect of enzyme supplementation to dehulled lupin‐based diets on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, 38 (12), 1274-1282.
51.Sardar, P., Randhawa, H. S., Abid, M., & Prabhakar, S. K. (2007). Effect of dietary microbial phytase supplementation on growth performance, nutrient utilization, body compositions and haemato‐biochemical profiles of Cyprinus carpio (L.) fingerlings fed soyprotein based diet. Aquaculture Nutrition, 13 (6), 444-456.
52.Li, X. Q., Zhang, X. Q., Kabir Chowdhury, M. A., Zhang, Y., & Leng, X. J. (2019). Dietary phytase and protease improved growth and nutrient utilization in tilapia (Oreochromis niloticus × Oreochromis aureus) fed low phosphorus and fishmeal‐free diets. Aquaculture nutrition, 25 (1), 46-55.
53.Vielma, J., Ruohonen, K., Gabaudan, J., & Vogel, K. (2004). Top spraying soybean meal based diets with phytase improves protein and mineral digestibilities but not lysine utilization in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research,35 (10), 955-964.
54.Khorasani-Nejad, M., Taati, R., & Abdulahpour Biria, H. (2018). Comparison of individual and combined levels of commercial enzymes on feeding efficiency and chemical composition of common carp (Cyprinus carpio) carcass. Journal of Veterinary Research, 74 (1), 35-43.
55.Monier, M. N. (2020). Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiology and Biochemistry, 46 (2), 713-723.
56.Knowles, S., Hrubec, T. C., Smith, S. A., & Bakal, R.S. (2006). Hematology and plasma chemistry reference intervals for cultured shortnose (Acipenser brevirostrum). Veterinary Clinical Pathology. 35 (4), 434-440.
57.Kazemi, R., Pourdehghani, M., Yousefi Jourdehi, A., Yarmohammadi, M., & Nasri Tajan, M. (2010). Cardiovascular system physiology of aquatic animals and applied techniques of fish hematology Bazargan Press, Rasht. 194p.
58.Sattari, M. (2002). Ichthyology (1): Anatomy and Physiology. Naghshe Mehr Press, Tehran, Iran. 862p. [In Persian]
59.Siwicki, A. K., Anderson, D. P., & Rumsey, G. L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology and Immunopathology.41 (1-2), 125-139.
60.Homayoni, M., Safari, R., Imanpour,M. R., Kiapour, F., Sancholi, H., & Shokohian, B. (2019). Effects of using multi-enzyme apsozyme and betaine in diet on some blood parameters and carcass composition in beluga (Huso huso). Animal Environment,12 (2), 117-122.
61.Zamini, A., Kanani, H., Esmaeili, A., Ramezani, S., & Zorie Zahara, S. J. (2012). Effects of Two Dietary Exogenous Multi-Enzyme Supplementation, Natuzyme® and Beta-mannanase (Hemicell®), on Growth and Blood Parameters of Caspian Salmon (Salmo trutta Caspius). Comparative Clinical Pathology. 23, 187-192.
62.Hosseinifard, S. M., Ghobadi, S. H., Khodabakhsh, E., & Razeghi Mansour, M. (2013). The effect of different levels of soybean meals and avizyme enzyme supplement on hematological and biochemical parameters of serum in rainbow trout. Iranian Veterinary Journal. 9 (3), 43-53.
63.Taati, R., & Salehi, M. (2017). Comparison of blood and biochemical indices of common carp (Cyprinus carpio) fed with single and combined levels of commercial multi-enzymes. Journal of Applied Fisheries Research, 6 (2), 119-134.
64.Oguz, M. N., & Goncuolu, F. K. O. E. (2011). Kavuzu Al nm þ Arpan n B ld rc nlarda Performants ve Baz Kan Parametreleri Uzerine Etkisi.
65.Mohammadbeygi, M., Imanpour, M. R., Taghizadeh, V., & Shabani, A. (2013). Endo 1- 3(4) Beta-glucanase supplementation of Barley Based Diet and Its Effect on Some Hematological Parameters of Common Carp (Cyprinus carpio). Global Veterinaria. 10 (1), 39-45.
66.Salehi Farsani, A., Soltani, M., Kamali, A., & Shamsaei Mahdana, M. (2018). The effect of macroguard immune stimulant and spirulina algae (Arthrospira platensis) on some blood parameters of ozone fish (Acipenser stellatus). Animal Environment,11 (4), 171-176.
67.Adel, M., Yeganeh, S., Dadar, M., Sakai, M., & Dawood, M. A. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish & Shellfish Immunology, 56, 436-444.