The effect of using synbiotic pectin and Lactobacillus plantarum on growth performance and expression of genes related to growth in beluga sturgeon (Huso huso)

Document Type : scientific research article

Authors

1 Ph.D. Student, Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Corresponding Author, Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Associate Prof., Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

5 Professor, Dept. of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Abstract

Increasing the growth and immune system of beluga sturgeon (Huso huso) which is a valuable species is an important aim for aquaculture so The purpose of this study was to investigate the effect of pectin and L. plantarum on growth performance and growth genes of juvenile beluga sturgeon (Huso huso). Triplicate groups of beluga juveniles each (15 ± 3 g) were placed in 9 oval tanks (400) and fed with the 107 cfu g-1, 108 cfu g-1, pectin (1%), pectin (2%), 107 cfu g-1 and 1% pectin, 107 cfu g-1 and 2% pectin, 108 cfu g-1 and 1% pectin, 108 cfu g-1 and 2% pectin and control group. The trial lasted 8 weeks. At the end of experiment biometery was done and brain and liver tissue were separataed. Results showed that although pectin and L. plantarum could enhance growth factors separately,the highest FW, GW and SGR was observed in fish fed 108 cfu g-1 and 2% pectin which had significant differences with others treatments and control (P<0.05). Also the highest genes expression was in this treatment and the lowest in control. In general, pectin and L. plantarum could significantly affect growth performance in juvenile blugae

Keywords

Main Subjects


1.Mohseni, M., Pourali, H. R., Kazrmi, R., & Bai, S. C. (2013). Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga: Huso huso L. 1758. Aquaculture research. 45, 1832-1841.
2.Harikrishnan, R., Kim, M. C., Kim, J. S., Balasundaram, C., & Heo, M. S. (2011). Probiotics and herbal mixtures enhance the growth, blood constituents, and nons-pecific immune response in Paralichthys olivaceus against Streptococcus parauberis. Fish Shellfish Immunol. 31, 310-317.
3.Gatesoupe, F. J. (1999). The use of probiotics in aquaculture: a review. Aquaculture. 180, 147-165.
4.Mahious, A. S., & Ollevier, F. (2005). Probiotics and prebiotics in aquaculture: review. 1st regional workshop on techniques for enrichment of live food for use in larviculture. AAARC. Pp: 17-26.
5.Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice and Research Clinical Gastroenterology. 18, 287-298.
6.Wang, T., Cheng, Y., Chen, X., Liu, Z., & Long, X. (2017). Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater. Chin. J. Oceanol. Limno.35, 89-97.
7.Azevedo, R. V. J. C., Fosse-Filho, S. L., Pereira, D. R., & Vidal-Júnior, M. V. (2016). Prebiotic, probiotic and synbiotic to Trichogaster leeri larvae. Arq. Bras. Med. Vet. Zootec. 68, 795-804.
8.Nguyen, N., Onoda, S., Khanh, T. V., Hai, P. D., Trung, N .T., & Koshio, S. (2011). Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia: Oreochromis niloticus. Aquaculture. 498, 371-379.
9.Li, Y., Liu, H., Dai, X., Li, J., & Ding, F. (2018). Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology. 76, 78-92.
10.Soares, M. P., Oliviera, F. C., Cardoso, I. L., Urbianty, E. C., Campos, C. M., & Hisano, H. (2018). Glucan-MOS® improved growth and innate immunity in pacu stressed and experimentally infected with Aeromonas hydrophila. Fish & Shellfish Immunology.73, 133-140.
11.Nan, B., Min, Gu., Xiaojie, Xu., Bingying, Xu., & Ashild, K. (2017). Protective effects of mannan oligosaccharides on turbot Scophthalmus maximus suffering from soy enteropathy. Aquaculture. 476, 141-151.
12.Bekcan, S., Dogankaya, L., & Cakirogullari, G. C. (2006). Growth and body composition of European catfish Silurus glanis. fed diets containing different percentages of protein. The Israeli Journal of Aquaculture- Bamidgeh. 58, 137-142.
13.Hevroy, E., Espe, M., Waagbo, R., Sandnes, K., Ruud, M., & HEMR, G. I. (2005). Nutrient utilization in Atlantic salmon: Salmo salar L. fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition. 11, 301-313.
14.Van Doan, H., Hoseinifar, S. H., Naraballobh, W., Jaturasitha, S., Tongsiri, S., Chitmanat, C., et al. (2019). Dietary inclusion of Orange peels derived pectin and Lactobacillus plantarum for Nile tilapia: Oreochromis niloticus cultured under indoor biofloc systems. Aquaculture. 508, 98-105.
15.Ho, Y. Y., Lin, C. M., & Wu, M. C. (2017). Evaluation of the prebiotic effects of citrus pectin hydrolysate, Journal of Food and Drug Analysis. 25, 550-558.
16.Rahimnejad, S., Guardiola, F. A., Leclercq, E., Ángeles Esteban, M., Castex, M., Sotoudeh, E., & Lee, S. M. (2018). Effects of dietary supplementation with Pediococcus acidilactici MA18/5M, galactooligosaccharide and their synbiotic on growth, innate immunity and disease resistance of rockfish: Sebastes schlegeli. Aquaculture. 482, 36-44.
17.Xu, G., Xing, W., Li, T., Ma, Z., Liu, C., Jiang, N., & Luo, L. (2018). Effects of 570 dietary raffinose on growth, non-specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂), Fish & Shellfish Immunology. 72, 237-246.
18.Wang, An. R., Ran, C., Ringø, E., & Zhou Zhi, G. (2017). Progress in fish gastrointestinal microbiota research, Reviews in Aquaculture. 32, 235-247.
19.Dawood, M. A. O., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 454, 243-251.
20.Irianto, A., & Austin, B. (2002). Probiotics in aquaculture. Journal of Fish Diseases. 25, 649-654.
21.Oluremi, O., Ngi, J., & Andrew, I. (2007). Phytonutrients in citrus fruit peel meal and nutritional implication for livestock production. Livestock Research for Rural Development. 19, 1-5.
22.Van Doan, H., Hoseinifar, S. H., Dawood, M. A. O., Chitmanat, C., & Tayyamath, K. (2017). Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia: Oreochromis niloticus. Fish & Shellfish Immunology. 70, 87-94.
23.Son, V. M., Chang, C. C., Wu, M. C., Guu, Y. K., Chiu, C. H., & Cheng, W. (2009). Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish & Shellfish Immunology. 26, 691-698.
24.Hoseinifar, S. H., Mirvaghefi, A. R., Mojazi Amiri, B., Khoshbavar Rostami, H. A., Poor Amini, M., & Darvish Bastami, K. (2011). The probiotic effects of dietary inactive yeast Saccharomyces cerevisiae var. ellipsoideus on growth factors, survival, body composition and intestinal microbiota of juvenile Beluga Huso huso, Iranian Scientific Fisheries Journal. 19, 55-66.
25.Lara-Flores, M. (2011). The use of probiotic in aquaculture: an overview. International Research Journal of Microbiology. 2, 471-478.
26.Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia: Oreochromis spp. Fish & Shellfish Immunology. 86, 260-268.
27.Hu, X., Cao, Y., Wen, G., Zhang, X., Xu, Y., Xu, W., Xu, Y., & Li, Z. (2017). Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems. Aquaculture Research. 48, 2691-2705.
28.Hoseinifar, S. H., Ringø, E., Shenavar Masouleh, A., & Esteban, M. Á. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture:a review. Reviews in Aquaculture.8, 89-102.
29.Duan, C., Duguay, S. J., & Plisetskaya, E. M. (1993). Insulin-like growth factor I (IGF-I) mRNA expression in Coho salmon, Oncorhynchus kisutch: tissue distribution and effects of growth hormone/prolactin family proteins.Fish Physiol. Biochem. 11, 371-379.
30.Zheng, K. D., Chen, X. C., & Li, Y. W. (2007). Molecular cloning, sequence analysis and tissue expression ofinsulin-like growth factor-I in Chinese Sucker, Myxocyprinus asiaticus. Chin. J. Zool. 42, 39-45. [In China, with English abstract]
31.Deng, L., Zhang, W. M., Lin, H. R., & Cheng, C. H. K. (2004). Effects of food deprivation on expression of growthhormone receptor and proximate composition in liver of black seabream Acanthopagrus schlegeli. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology. 137, 421-432.
32.Azaza, M. S., Assad, A., Maghrbi, W., & El-Cafsi, M. (2013). The effectsof rearing density on growth, size heterogeneity and inter-individual variation of feed intake in monosex male Nile tilapia Oreochromis niloticus L. Animal. 7, 1865-1874.
33.Dawood, M.A.O., Eweedah, N.M., Moustafa, E.M., & Shahin, M.G. (2019). Synbiotic Effects of Aspergillus oryzae and β-Glucan on Growth and Oxidative and Immune Responses of Nile Tilapia., Oreochromis niloticus. Probiotics and Antimicrobial Proteins. Pp: 1-12.