Ultrasound-assisted optimization of extraction of antioxidant compounds from Azolla filiculoides

Document Type : scientific research article

Authors

1 1Ph.D. Student of Seafood Processing, Dept. of Fisheries, Faculty of Marine Science, Tarbiat Modares University, Noor, Iran

2 2Assistant Prof., Dept. of Fisheries, Faculty of Natural Resources, University of Guilan, Sowme Sara, Iran

Abstract

The present study was conducted to extract antioxidant compounds from Azolla filiculoides using the ultrasound-assisted and Taguchi optimization methods. The results demonstrated that ultrasound sonication time has no significant effect on DPPH radical scavenging and total phenolic compounds (p> 0.05). The highest concentration of the extracted phenolic compounds was measured in the mixture of ethanol and water (p < 0.05) as well as in dried sample to solvent with the ratio of 1:15 (p < 0.05). The percentage of DPPH radical scavenging exhibited a wide range, with the highest level (75.5%) at 15 min (p> 0.05). Moreover, this index in the ethanol extract was considerably higher than that of in the other treatments (p < 0.05). Concerning Taguchi optimization method, mean comparison was performed after designing the experiments and revealed that the ethanol extract was chosen as the optimum treatment with the ratio of 1:10 of dried powder to solvent for 15 min. Taken together, A. filiculoides could be used as a cost-effective antioxidant source.

Keywords


1.Alonso-Carrillo, N., de los, M., Aguilar-Santamaría, Á., Vernon-Carter, E.J., Jiménez-Alvarado, R., Cruz Sosa,
F., and Román-Guerrero, A. 2017. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity, Ind. Crops
Prod. 103: 213-221. https://doi.org/ 10.1016/j.indcrop.2017.04.002.
2.Aware, C.B., Patil, R.R., Vyavahare, G.D., Gurme, S.T., and Jadhav, J.P., 2019. Ultrasound-Assisted Aqueous Extraction of Phenolic, Flavonoid Compounds and Antioxidant Activity of Mucuna macrocarpa Beans: Response Surface Methodology Optimization. J. Amer. Coll. Nutr. 38: 4. 364-372.
3.Babakhani Lashkan, A., and Sarzare, A. 2016. Optimization of antioxidant compounds extraction from Azolla fern, Azolla filiculoides. JFST. 5: 1. 117-130. URL: http://journals.modares.ac.ir/article-6-10099- fa.html.
4.Brand-Williams, W., Cuvelier, M.E.,and Berset, C.L.W.T. 1995. Use of afree radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28: 1. 25-30.
5.Cho, M., Lee, H.S., Kang, I.J., Won, M.H., and You, S. 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed, Food Chem. 127: 999-1006. https://doi.org/10.1016/j.foodchem.2011. 01.072.
6.Davaynejad, G., Stefanovits-Banyai,É., and Nagy, P.T. 2012. Investigationof antioxidant capacity and some bioactive compounds of Iranian pistachio (Pistachio vera L.) cultivars. Notulae Scientia Biologicae, 4: 4. 62-66.
7.Djissou, A.S.M., Ochiai, A., Koshio, S., and Fiogbe, E.D. 2017. Effect of total replacement of fishmeal by earthworm and Azolla filiculoides meals in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) reared in concrete tanks, Ind. J. Fish. 64: 31-36. https://doi.org/ 10.21077/ijf.2017.64.1.55317-05.
8.Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Barroso, C.G., and Barbero, G.F. 2017. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp, Food Chem. 219: 23-32. https://doi.org/10.1016/j.foodchem.2016.09. 122.
9.Goldsmith, C.D., Vuong, Q.V., Stathopoulos, C.E., Roach, P.D., and Scarlett, C.J. 2018. Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT, 89: 284-290.
10.Hong Yu, L., Bin, W., Chun Guang, Y., You le, Q., and Chuan ling, S. 2010. Evaluation of antioxidant activities of five selected brown seaweeds from China, J. Med. Plant Res. 4: 2557-2565. https://doi.org/10.5897/JMPR10.609.
11.Karacabey, E., and Mazza, G. 2010. Optimisation of antioxidant activity of grape cane extracts using response surface methodology, Food Chem.119: 343-348. https://doi.org/10.1016/ j.foodchem.2009.06.029.
12.Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.S., Dangles, O., and Chemat, F. 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119: 2. 851-858.
13.Lim, S.N., Cheung, P.C.K., Ooi, V.E.C., and Ang, P.O. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum, J. Agric. Food Chem. 50: 3862-3866. https://doi.org/10.1021/jf020096b.
14.Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., and Pacheco, N. 2017. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources, Agronomy. 7: 47. https://doi.org/10.3390/agronomy7030047.
15.Mohamadi, M., ELHAMI, R.A., and Pourfallah, Z. 2012. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin.
16.Mylonaki, S., Kiassos, E., Makris, D.P. and Kefalas, P. 2008. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol- based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392: 5. 977.
17.Naghdi, Sh., and Babakhani Lashkan, A. 2018. Ultrasound assisted extraction of antioxidant compounds from four Persian Gulf seaweed. Aquaculture sciences. 6: 2. 29-38.
18.Nayak, N., and Padhy, R.N. 2017. GC-MS analysis of bioactive compounds and host-toxicity studies of Azolla caroliniana symbiotic with the cyanobacterium Anabaena azollae, Indian J. Pharm. Educ. Res. 51: 24-33. https://doi.org/10.5530/ijper.51.2s.46.
19.Nezamabadi, S.M., and Ansari, M.T. 2008. Analytical research on technology and management of aquatic fern
in Anzali lagoon and northern of Iran wetlands. Agricultural science.2: 549-562. (In Persian)
20.Nguang, S.L., Yeong, Y.L., Pang,S.F., and Gimbun, J. 2017. Ultrasonic Assisted Extraction on Phenolic and Flavonoid Content from Phyllanthus niruri Plant, Ind. J. Sci. Technol. 10: 1-5. https://doi.org/10.17485/ijst/2017/v10i2/110391.
21.Nipornram, S., Tochampa, W., Rattanatraiwong, P., and Singanusong, R. 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food chemistry, 241: 338-345.
22.Ribeiro, E.F., Luzia, D.M.M., and Jorge, N. 2019. Antioxidant compounds extraction from coffee husks: the influence of solvent type and ultrasound exposure time. Acta Scientiarum. Technology, 41: e36451.
23.Saha, J., Biswas, A., Chhetri, A.,and Sarkar, P.K. 2011. Response surface optimisation of antioxidant extraction from kinema, a Bacillus-fermented soybean food. Food chemistry, 129: 2. 507-513.
24.Sahin, S., Samli, R., Birteks, A.S., Tan, Z., Barba, F.J., Chemat, F., Cravotto, G., and Lorenzo, J.M. 2017. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties, Molecules. 22 (2017). https:// doi.org/10.3390/molecules22071056.
25.Savic Gajic, I., Savic, I., Boskov, I., Žerajić, S., Markovic, I., and Gajic, D. 2019. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae Pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants, 8: 8. 248.
26.Tabart, J., Kevers, C., Sipel, A., Pincemail, J., Defraigne, J.O., and Dommes, J. 2007. Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chemistry, 105: 3. 1268-1275.
27.Taga, M.S., Miller, E.E., and Pratt, D.E. 1984. Chia seeds as a source of natural lipid antioxidants. J. Amer. Oil Chem. Soc. 61: 5. 928-931.
28.Tian, J., Wu, X., Zhang, M., Zhou, Z., and Liu, Y. 2018. Comparative study on the effects of apple peel polyphenols
and apple flesh polyphenols on cardiovascular risk factors in mice. Clinical and Experimental Hypertension, 40: 1. 65-72.
29.Vilkhu, K., Mawson, R., Simons, L., and Bates, D. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovative Food Science & Emerging Technologies, 9: 2. 161-169.
30.Vuong, Q., Goldsmith, C., Dang, T., Nguyen, V., Bhuyan, D., Sadeqzadeh, E., Scarlett, C., and Bowyer, M. 2014. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from Euphorbia tirucalli using response surface methodology. Antioxidants,3: 3. 604-617.
31.Yang, Q.Q., Gan, R.Y., Ge, Y.Y., Zhang, D., and Corke, H. 2019. Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris L.) antioxidants. Antioxidants, 8: 4. 83.
32.Zhang, J., Zong, A., Xu, T., Zhan, P., Liu, L., Qiu, B., Liu, W., Jia, M., Du, F., and Tian, H. 2018. A novel method: ionic liquid-based ultrasound-assisted extraction of polyphenols from Chinese purple yam. Natural product research, 32: 7. 863-866.
33.Zhou, Y., Zheng, J., Gan, R.Y., Zhou, T., Xu, D.P., and Bin Li, H. 2017. Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat, Molecules. 22: 1-13. https://doi.org/10.3390/molecules22040638.
34.Zhou, Y., Xu, X.Y., Gan, R.Y.,Zheng, J., Li, Y., Zhang, J.J., Xu,D.P., and Li, H.B. 2019. Optimization of ultrasound-assisted extraction of antioxidant polyphenols from the seed coats of red sword bean (Canavalia gladiate (Jacq.) DC.). Antioxidants,
8: 7. 200.
1.Alonso-Carrillo, N., de los, M., Aguilar-Santamaría, Á., Vernon-Carter, E.J., Jiménez-Alvarado, R., Cruz Sosa,F., and Román-Guerrero, A. 2017. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity, Ind. Crops Prod. 103: 213-221. https://doi.org/ 10.1016/j.indcrop.2017.04.002.
2.Aware, C.B., Patil, R.R., Vyavahare, G.D., Gurme, S.T., and Jadhav, J.P., 2019. Ultrasound-Assisted Aqueous Extraction of Phenolic, Flavonoid Compounds and Antioxidant Activity of Mucuna macrocarpa Beans: Response Surface Methodology Optimization. J. Amer. Coll. Nutr. 38: 4. 364-372.
3.Babakhani Lashkan, A., and Sarzare, A. 2016. Optimization of antioxidant compounds extraction from Azolla fern, Azolla filiculoides. JFST. 5: 1. 117-130. URL: http://journals.modares.ac.ir/article-6-10099- fa.html.
4.Brand-Williams, W., Cuvelier, M.E.,and Berset, C.L.W.T. 1995. Use of afree radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28: 1. 25-30.
5.Cho, M., Lee, H.S., Kang, I.J., Won, M.H., and You, S. 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed, Food Chem. 127: 999-1006. https://doi.org/10.1016/j.foodchem.2011. 01.072.
6.Davaynejad, G., Stefanovits-Banyai,É., and Nagy, P.T. 2012. Investigationof antioxidant capacity and some bioactive compounds of Iranian pistachio (Pistachio vera L.) cultivars. Notulae Scientia Biologicae, 4: 4. 62-66.
7.Djissou, A.S.M., Ochiai, A., Koshio, S., and Fiogbe, E.D. 2017. Effect of total replacement of fishmeal by earthworm and Azolla filiculoides meals in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) reared in concrete tanks, Ind. J. Fish. 64: 31-36. https://doi.org/ 10.21077/ijf.2017.64.1.55317-05.
8.Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Barroso, C.G., and Barbero, G.F. 2017. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp, Food Chem. 219: 23-32. https://doi.org/10.1016/j.foodchem.2016.09. 122.
9.Goldsmith, C.D., Vuong, Q.V., Stathopoulos, C.E., Roach, P.D., and Scarlett, C.J. 2018. Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT, 89: 284-290.
10.Hong Yu, L., Bin, W., Chun Guang, Y., You le, Q., and Chuan ling, S. 2010. Evaluation of antioxidant activities of five selected brown seaweeds from China, J. Med. Plant Res. 4: 2557-2565. https://doi.org/10.5897/JMPR10.609.
11.Karacabey, E., and Mazza, G. 2010. Optimisation of antioxidant activity of grape cane extracts using response surface methodology, Food Chem.119: 343-348. https://doi.org/10.1016/ j.foodchem.2009.06.029.
12.Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.S., Dangles, O., and Chemat, F. 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119: 2. 851-858.
13.Lim, S.N., Cheung, P.C.K., Ooi, V.E.C., and Ang, P.O. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum, J. Agric. Food Chem. 50: 3862-3866. https://doi.org/10.1021/jf020096b.
14.Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., and Pacheco, N. 2017. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources, Agronomy. 7: 47. https://doi.org/10.3390/agronomy7030047.
15.Mohamadi, M., ELHAMI, R.A., and Pourfallah, Z. 2012. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin.
16.Mylonaki, S., Kiassos, E., Makris, D.P. and Kefalas, P. 2008. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol- based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392: 5. 977.
17.Naghdi, Sh., and Babakhani Lashkan, A. 2018. Ultrasound assisted extraction of antioxidant compounds from four Persian Gulf seaweed. Aquaculture sciences. 6: 2. 29-38.
18.Nayak, N., and Padhy, R.N. 2017. GC-MS analysis of bioactive compounds and host-toxicity studies of Azolla caroliniana symbiotic with the cyanobacterium Anabaena azollae, Indian J. Pharm. Educ. Res. 51: 24-33. https://doi.org/10.5530/ijper.51.2s.46.
19.Nezamabadi, S.M., and Ansari, M.T. 2008. Analytical research on technology and management of aquatic fern
in Anzali lagoon and northern ofIran wetlands. Agricultural science.2: 549-562. (In Persian)
20.Nguang, S.L., Yeong, Y.L., Pang,S.F., and Gimbun, J. 2017. Ultrasonic Assisted Extraction on Phenolic and Flavonoid Content from Phyllanthus niruri Plant, Ind. J. Sci. Technol. 10: 1-5. https://doi.org/10.17485/ijst/2017/v10i2/110391.
21.Nipornram, S., Tochampa, W., Rattanatraiwong, P., and Singanusong, R. 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food chemistry, 241: 338-345.
22.Ribeiro, E.F., Luzia, D.M.M., and Jorge, N. 2019. Antioxidant compounds extraction from coffee husks: the influence of solvent type and ultrasound exposure time. Acta Scientiarum. Technology, 41: e36451.
23.Saha, J., Biswas, A., Chhetri, A.,and Sarkar, P.K. 2011. Responsesurface optimisation of antioxidant extraction from kinema, a Bacillus-fermented soybean food. Food chemistry, 129: 2. 507-513.
24.Sahin, S., Samli, R., Birteks, A.S., Tan, Z., Barba, F.J., Chemat, F., Cravotto, G., and Lorenzo, J.M. 2017. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties, Molecules. 22 (2017). https:// doi.org/10.3390/molecules22071056.
25.Savic Gajic, I., Savic, I., Boskov, I., Žerajić, S., Markovic, I., and Gajic, D. 2019. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae Pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants, 8: 8. 248.
26.Tabart, J., Kevers, C., Sipel, A., Pincemail, J., Defraigne, J.O., and Dommes, J. 2007. Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chemistry, 105: 3. 1268-1275.
27.Taga, M.S., Miller, E.E., and Pratt, D.E. 1984. Chia seeds as a source of natural lipid antioxidants. J. Amer. Oil Chem. Soc. 61: 5. 928-931.
28.Tian, J., Wu, X., Zhang, M., Zhou, Z., and Liu, Y. 2018. Comparative study on the effects of apple peel polyphenols
and apple flesh polyphenols on cardiovascular risk factors in mice. Clinical and Experimental Hypertension, 40: 1. 65-72.
29.Vilkhu, K., Mawson, R., Simons, L., and Bates, D. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovative Food Science & Emerging Technologies, 9: 2. 161-169.
30.Vuong, Q., Goldsmith, C., Dang, T., Nguyen, V., Bhuyan, D., Sadeqzadeh, E., Scarlett, C., and Bowyer, M. 2014. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from Euphorbia tirucalli using response surface methodology. Antioxidants,3: 3. 604-617.
31.Yang, Q.Q., Gan, R.Y., Ge, Y.Y., Zhang, D., and Corke, H. 2019. Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris L.) antioxidants. Antioxidants, 8: 4. 83.
32.Zhang, J., Zong, A., Xu, T., Zhan, P., Liu, L., Qiu, B., Liu, W., Jia, M., Du, F., and Tian, H. 2018. A novel method: ionic liquid-based ultrasound-assisted extraction of polyphenols from Chinese purple yam. Natural product research, 32: 7. 863-866.
33.Zhou, Y., Zheng, J., Gan, R.Y., Zhou, T., Xu, D.P., and Bin Li, H. 2017. Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat, Molecules. 22: 1-13. https://doi.org/10.3390/molecules22040638.
34.Zhou, Y., Xu, X.Y., Gan, R.Y.,Zheng, J., Li, Y., Zhang, J.J., Xu,D.P., and Li, H.B. 2019. Optimizationof ultrasound-assisted extraction of antioxidant polyphenols from the seed coats of red sword bean (Canavalia gladiate (Jacq.) DC.). Antioxidants,
8: 7. 200.