Investigation of the effect of supplemented diet with rice husk extract (Oryza sativa) on growth performance and some related genes expression (GH, IGF-1)

Document Type : scientific research article

Authors

1 Dept. of Aquaculture, Babol Branch, Islamic Azad University, Babol, Iran

2 Corresponding Author, Dept. of Aquatic Animal Health, Babol Branch, Islamic Azad University, Babol, Iran.

Abstract

the aim of this research was conducted to investigation of rice husk extract on growth performance and expression of related genes (GH and IGF-1) in ozone fish fingerlings. For this aim, the number of 120 pieces of healthy ozone fish fingerlings (50 ± 2.6 g) was purchased and then was randomly transferred in tanks with a water volume of 1000 liters. They were fed for 60 days with different levels of rice husk extract in the basic diet (crud protein: 44.5%) including 0.5 , 1 and 2 g Kg-1 of diet along with a control group (with three replicates) at the rate of 5% of body weight. At the end of the trial, growth performance was evaluated by biometrical assay completely randomly. Also, brain tissue was sampled to investigate the expression of genes involved in growth (GH, IGF-1).The results showed that feeding ozone fish fingerlings with different levels of rice husk extract had a significant effect on the growth performance and the expression of related genes in treatments compared to the control group (p<0.05). So that the best results were observed in treatment fed with 2 g of rice husk extract in per kilogram of diet (p<0.05). In general, the results showed that using rice husk extract was able to improve the growth performance and the expression of related genes involved in growth in ozone fish fingerlings, and the best level recommended in this study was 2 grams in per kilogram of diet.

Keywords

Main Subjects


 1.Nazari, R., Makhdumi, Ch., & Naqvi, A. (2010). The effect of heat on the growth and maturation of farmed beluga, Fisheries Journal, 3 (1), 1-16.
2.Hatami, A. S., Paknejad, H., & Sodagar, M. (2022). The effect of adding Top3 biotronics to the diet on growth indicators, mucus and blood immunity and the expression of growth-related genes (GH, Ghrelin, IGF-1) in Iranian tasmahi (Acipenser persicus). Animal Physiology and Development Quarterly Journal, 14 (4), 17-34.
3.Khara, H., Falahatkar, B., Maknetkhah, B., Rahbar, M., & Ahmadnejad, M. (2013). The effect of 17-beta-estradiol hormone injection on hematological changes of juvenile ozone fish (Acipenser stellatus). Marine Biology, 6(21), 73-78.
4.Golsfid, S. A., Abdul Maliki, Sh., Behrouz Khosh Qalb, M. R., Jalilpour, J., Halachian, A., Alizadeh Roudpashti, M., & Seyed Hosni, M. H. (2022). Quantitative and qualitative survey of baby sturgeons until release in Sefidroud river. Scientific Journal of Fisheries, 30 (2), 93-102.
5.Zakariaee, H., Sodagar, M., Hosseini, S. P., Paknejad, H., & Baroah, K. (2019). The effect of using a synbiotic produced from button mushroom extract with two species of lactic acid bacteria on the activity of digestive enzymes, carcass composition, growth and intestinal microbial flora in zebrafish (Danio rerio). Khorramshahr Marine Sciences and Techniques, in press.
6.Raisi, M., Fakhrian, M., Jafarian, M., & Varshoui, H. (2013). Studying the effect of essential oils of some plants on the non-specific immunity of asterliad fish (Acipenser ruthenus). Scientific Research Journal of Marine Biology, 6(1), 23-28.
7.Zare, A., Nazerian, S., Taheri Mirquaid, A., & Ebrahimzadeh, S. M. (2018). Investigating the effect of the active ingredient of turmeric plant (Curcuma longa L.) on the hematological factors of juvenile bluga. Journal of Veterinary Research, 74(2), 199-208.
8.Zakariaee, H., Sudagar, M., Hosseini, S. S., Paknejad, H., & Baruah, K. (2021). In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Frontiers in Microbiology, 12.
9.Ahmed, M., Abdullah, N., Shuib, A. S., & Razak, S. A. (2017). Influence of raw polysaccharide extract from mushroom stalk waste on growth and pH perturbation induced-stress in Nile tilapia, Oreochromis niloticus. Aquaculture,
468, 60-70.
10.Van Doan, H., Doolgindachbaporn, S., & Suksri, A. (2016). Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Fish physiology and biochemistry, 42 (5), 1427-1440.
11.Nya, E. J., & Austin, B. (2009). Use of garlic, Allium sativum, to control Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 32 (11), 963-970.
12.Nya, E. J., & Austin, B. (2009). Use of dietary ginger, Zingiber officinale Roscoe, as an immunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 32 (11), 971-977.
13.Awad, E., & Austin, B. (2010). Use of lupin, Lupinus perennis, mango, Mangifera indica, and stinging nettle, Urtica dioica, as feed additives to prevent Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 33 (5), 413-420.
14.Awad, E., Mitchell, W. J., & Austin, B. (2011). Effect of dietary supplements on cytokine gene expression in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 34 (8), 629-634.
15.Elkamel, A. A., & Mosaad, G. M. (2012). Immunomodulation of Nile Tilapia, Oreochromis niloticus, by Nigella sativa and Bacillus subtilis. Journal of Aquaculture & Research Development, 3 (6).
16.Gabriel, N. N., Qiang, J., He, J., Ma, X. Y., Kpundeh, M. D., & Xu, P. (2015). Dietary Aloe vera supplementation
on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae
in tilapia (GIFT). Fish & Shellfish Immunology, 44 (2), 504-514.
17.Yazdani, N., Mohammad Bagherzadeh, M., & Zakari, A. R. (2013). Microwave synthesis of silicon carbide from activated rice husk ash. Scientific Research Quarterly of Ceramic Science and Engineering, 3 (4), 19-27.
18.Salarinia, A., Afzali, N., Hosseini Vashan, S. J., & Bashti, M. (2017). The effect of surface and particle size of insoluble polysaccharides of rice hulls and oat hulls on performance, carcass characteristics and intestinal morphology of broiler chickens. Animal Production, 20 (4), 625-639.
19.Abazari, A., Navidshah, B., Mirzaei Agje Qeshlaq, F., & Nick Bean, S. (2016). Effect of rice husk consumption level on small intestine morphology in broiler chickens. National conference on the development of agricultural economy with the approach of national determination and jihadi management.
20.Sadeghi, A., Toghyani, M., & Gheisari, A. (2015). Effects of various fiber types and choice. International Journal of Agriculture and Biology. 12, 531-536.
21.Kameli, M., Tarshizi Karimi, M. A., & Rahimi, Sh. (2015). The effect of adding rice husk on performance, carcass traits, blood biochemical parameters and thyroid hormones of broiler chickens. Livestock Products Research, 14, 82-89.
22.Yang, L. C., Hsieh, C. C., & Lin, W. C. (2015). Characterization and immunomodulatory activity of rice hull polysaccharides. Journal homepage. 124, 150-156.
23.Yaqubfar, A. (2016). Carbohydrates in poultry nutrition. Merzdanash Publishing House - Abengah. Tehran Iran.
24.Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of food protection, 62(9), 1071-1087.
25.Falahatkar, B., Rahdari, A., Efatpanah, A., Maknetkhah, B., & Defense, S. (2018). Determining the most suitable percentage of feeding in the breeding of fish fry of different sizes. Aquatic Nutrition, 5(2), 17-26.
26.Iri, Y., Haqazih, M., Haqpanah, A., Khoshbavar Rostami, H. A., Qaravi, B., Ker, A. V., Ker, N. M., & Lakzaei, F. (2014). The effect of prebiotic oligofructose on the growth performance, survival and blood indices of Ozone fish fry. Scientific Journal of Fisheries, 24 (1), 97-108.
27.Jalali, M. A., Ahmadifar, E., Sudagar, M., & Takami, G. A. (2009). Growth efficiency, body composition, survival and haematological changes in great sturgeon (Huso huso Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquaculture Research, 40 (7), 804-809.
‏28.AOAC. (1996). Official method of analysis of the association of official analytical chemists. Association of official analytical chemists, Arlington, VA, USA.
29.Lee, D. H., Lim, S. R., Han, J. J., Lee, S. W., Ra, C. S., & Kim, J. D. (2014). Effects of dietary garlic powder on growth, feed utilization and whole body composition changes in fingerling sterlet sturgeon, Acipenser ruthenus. Asian-Australasian journal of animal sciences, 27 (9), 1303-1310.
30.Tacon, A. G. J. (1990). Standard method for nutritional and feeding of farmed fish and shrimp. Universidad del Mar, México Biblioteca del Campus Puerto Ánge, 1. 117p.
31.Bekcan, S., Dogankaya, L., & Cakirogullari, G. C. (2006). Growth and body composition of European catfish (Silurus glanis L.) fed diets containing different percentages of protein. The Israeli Journal of Aquaculture – Bamidgeh, 58 (2), 137-142.
32.Hevrøy, E., Espe, M., Waagbø, R., Sandnes, K., Ruud, M., & Hemre, G. I. (2005). Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11, 301-313.
33.Ai, Q., Mai, K., Tan, B., Xu, W., Duan, Q., Ma, H., & Zhang, L. (2006). Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea. Aquaculture, 260, 255-263.
34.Miandare, H. K., Farahmand, H., Akbarzadeh, A., Ramezanpour, S., Kaiya, H., Miyazato, M., Rytkönen, K.T., & Nikinmaa, M. (2013). Developmental transcription of genes putatively associated with growth in two sturgeon species of different growth rate, General and comparative endocrinology, 182, 41-47.
35.Awad, A. S., Kamel, R., & Sherief, M. A. E. (2011). Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/ spermine N-1-acetyl-transferase gene expression induced by renal ischaemia–reperfusion in rats. Journal of pharmacy and pharmacology, 63 (8), 1037-1042.
36.Paknejad, H., Enayat, T., Safari, R., & Hosseinifar, S. H. (2019). Study of GH and Ghrelin genes expression during the larvae developmental period in Danio rerio. Nova Biologica Reperta. 6 (2), 148-154.
37.Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research. 30, 36-36.
38.Forster, I., Higgs, D. A., Dosanjh, B. S., Rowshandeli, M., & Parr, J. (1999). Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11 ºC fresh water. Aquaculture, 179 (1-4), 109-125.
39.Bajlan, B., Zakeri, M., Musavi, S.M. Yavari, V., & Rajabzadeh, E. (2017). Effects of dietary supplementation of synbiotic on growth performance, feed utilization and body biochemical composition of Benni, Mesopotamichthys sharpeyi. Journal: Animal Research (Biology of Iran). 30 (4), 1-14.
40.Daniels, C. L., Merrifield, D. L., Ringø, E., & Davies, S. J. (2013). Probiotic, prebiotic and synbiotic applications for the improvement of larval European lobster (Homarus gammarus) culture. Aquaculture, 416, 396-406.
41.Olsen, A. B., Melby, H. P., Speilberg, L., Evensen, Ø., & Håstein, T. (1997). Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway--epidemiological, pathological and microbiological findings. Diseases of aquatic organisms, 31 (1), 35-48.
42.Bach-Knudsen, K. E. (1997). Carbohydrates and lignin contents of plant materials used in animal. Animal Feed Science and Technology, 67, 319-338.
43.Ganguly, S., Dora, K. C., Sarkar, S., & Chowdhury, S. (2013). Supplementation of prebiotics in fish feed: a review. Reviews in Fish Biology and Fisheries, 23 (2), 195-199.
44.Hoseinifar, S. H., Esteban, M. Á., Cuesta, A., & Sun, Y. Z. (2015). Prebiotics and fish immune response: a review of current knowledge and future perspectives. Reviews in Fisheries Science & Aquaculture, 23(4), 315-328.
45.Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2021). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology.
46.Liu, J., Li, M., Wang, R., & Qian, Y. (2021). Protective effect of moderate dietary cellulose against antibiotic‐induced growth retardation, blood deterioration and immunosuppression in juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research, 52 (12), 6000-6008.
47.Yousefian, M., & Amiri, M. S. (2009). A review of the use of prebiotic in aquaculture for fish and shrimp. African Journal of Biotechnology, 8 (25).
48.Ringø, E., Olsen, R. E., Gifstad, T. Ø., Dalmo, R. A., Amlund, H., Hemre, G. I., & Bakke, A. M. (2010). Prebiotics in aquaculture: a review. Aquaculture Nutrition, 16 (2), 117-136.
49.Mohammadian, T., Ghanei-Motlagh, R., Molayemraftar, T., Mesbah, M., Zarea, M., Mohtashamipour, H., & Nejad,
A. J. (2021). Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. Fish & Shellfish Immunology, 112, 38-45.
50.Sîrbu, E., Dima, M. F., Tenciu, M., Cretu, M., Coadă, M. T., Țoțoiu, A., Cristea, V., & Patriche, N. (2022). Effects of Dietary Supplementation with Probiotics and Prebiotics on Growth, Physiological Condition, and Resistance to Pathogens Challenge in Nile Tilapia (Oreochromis niloticus). Fishes, 7(5), 273.
51.Akrami, R., Hajimoradlou, A., Abbas, M., & Abdolmohammad, A. K. (2009). Effect of dietary prebiotic inulin on growth performance, intestinal microflora, body composition and hematological parameters of juvenile beluga, Huso huso (Linnaeus, 1758). Journal of the World Aquaculture Society,40 (6), 771-779.
52.Canosa, L. F., Chang, J. P., & Peter, R. E. (2007). Neuroendocrine control of growth hormone in fish. General and Comparative Endocrinology, 151 (1), 1-26.
53.Hemre, G. I., Mommsen, T. P., & Krogdahl, Å., (2002). Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquaculture nutrition, 8 (3), 175-194.
54.Tu, Y., Xie, S., Han, D., Yang, Y., Jin, J., & Zhu, X. (2015). Dietary arginine requirement for gibel carp (Carassis auratus gibelio var. CAS III) reduces with fish size from 50 g to 150 g associated with modulation of genes involved in TOR signaling pathway. Aquaculture, 449, 37-47.
55.Mommsen, T. P. (2001). Paradigms of growth in fish. Comparative biochemistry and physiology part B: Biochemistry and molecular biology, 129 (2-3), 207-219.
56.u, W., Lutz, C. G., Taylor, C. M., & Ortega, M. C. (2022). Improvement of Fish Growth and Metabolism by Oligosaccharide Prebiotic Supplement. Aquaculture Nutrition, 2022.
57.Midhun, S. J., Arun, D., Edatt, L., Sruthi, M. V., Thushara, V. V., Oommen, O. V., Sameer Kumar, V. B., & Divya, L. (2016). Modulation of digestive enzymes, GH, IGF-1 and IGF-2 genes in the teleost, Tilapia (Oreochromis mossambicus) by dietary curcumin. Aquaculture international, 24 (5), 1277-1286.
58.Yilmaz, S., Ergün, S., Şahin, T., Çelik, E. Ş., & Abdel-Latif, H.M. (2022). Effects of dietary reishi mushroom (Ganoderma lucidum) on the growth performance of Nile tilapia, Oreochromis niloticus juveniles. Aquaculture, 739057.
59.Scanes, C. G., Dunnington, E. A., Buonomo, F. C., Donoghue, D. J., & Siegel, P. B. (1989). Plasma concentrations of insulin like growth factors (IGF-) I and IGF-II in dwarf and normal chickens of high and low weight selected lines. Growth, development, and aging: GDA, 53(4), 151-157.
60.Berishvili, G., Baroiller, J. F., Eppler, E., & Reinecke, M. (2010). Insulin-like growth factor-3 (IGF-3) in male and female gonads of the tilapia: Development and regulation of gene expression by growth hormone (GH) and 17α-ethinylestradiol (EE2). General and comparative endocrinology,167 (1), 128-134.
61.Li, M., Raine, J. C., & Leatherland, J. F. (2007). Expression profiles of growth-related genes during the very early development of rainbow trout embryos reared at two incubation temperatures. General and comparative endocrinology, 153 (1-3), 302-310.
62.Wilkinson, R. J., Porter, M., Woolcott, H., Longland, R., & Carragher, J. F. (2006). Effects of aquaculture related stressors and nutritional restriction on circulating growth factors (GH, IGF-I and IGF-II) in Atlantic salmon and rainbow trout. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145 (2), 214-224.
63.Hsiao, C. M., Wu, Y. S., Nan, F. H., Huang, S. L., Chen, L., & Chen, S. N. (2016). Immunomodulator ‘mushroom beta glucan’induces Wnt/β catenin signalling and improves wound recovery in tilapia and rat skin: a histopathological study. International wound journal, 13 (6), 1116-1128.
64.El-Hawarry, W. N., Shourbela, R. M., Haraz, Y. G., Khatab, S. A., & Dawood, M. A. (2021). The influence of carbon source on growth, feed efficiency, and growth-related genes in Nile tilapia (Oreochromis niloticus) reared under biofloc conditions and high stocking density. Aquaculture, 542, 736919.
65.Abu-Elala, N. M., El-Sayed Ali, T., Ragaa, N. M., Ali, S. E., Abd-Elsalam, R. M., Younis, N. A., Abdel-Moneam, D. A., Hamdien, A. H., Bonato, M., & Dawood, M. A. O. (2021). Analysis of the productivity, immunity, and health performance of Nile tilapia (Oreochromis niloticus) broodstock-fed dietary fermented extracts sourced from Saccharomyces cerevisiae (Hilyses): A Field Trial. Animals 2021, 11, 815.