Comparison of UV absorption potential and phycobiliproteins amount extracted with the help of solvent and ultrasound from (Spirulina platensis) microalgae

Document Type : scientific research article

Authors

1 -

2 Professor of Seafood Processing, Department of Fisheries and Enviromental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Associate Professor of Seafood Processing, Department of Fisheries and Enviromental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Associate prof, Forest sciences faculty of Agricultural Sciences and Natural Resources University of Gorgan

5 Associated Professor /Gorgan University of Agricultural Sciences & Natural Resources

Abstract

microalgae produce a wide range of protective compounds and pigments (mycosporid-like amino acids, Scytonemines, phycobiliproteins, and carotenoids) against ultraviolet (UV) radiation, which specially reduce the risk of skin cancer and aging. To compare the effect of solvents on UV protection factor (SPF) as well as the extacted amounts of carbohydrates, proteins and phycobiliproteins of Spirulina platensis different solvents including aqueous, ethanolic, methanolic, aqueous/ethanolic and aqueous /methanol were used. The yield of lyophilized extracts was compared. The results showed that ethanolic extract had a higher protective factor than other extracts (SPF=11.94 ± 0.00) also, this extract showed a higher amount of carbohydrates (2.39 ± 0.002 mg/ml) than other extracts. Aqueous extract had the highest amount of phycobiliproteins and extraction efficiency between other lyophilized extracts (90.05%). Inconclusion, due to the significant amount of SPF of ethanolic extract, the useage of this extract in sunscreen formulations as a natural UV filter coulb be suggested.

Keywords


Adam, F., Abert-Vian, M., Peltier, G., and Chemat, F. 2012. Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology 144, 457-pp. 465.
Ansari, F.A., Ravindran, B., Gupta, S.K., Nasr, M., Rawat, I., and Bux, F. 2019. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management. 240: 293-302.
Arad, S.M., and Varon, A. 1992. Natural pigments from red microalgae for use in foods and cosmetics. Trends in Food Science & Technology April 3, pp. 92-97.
Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B., and Fern, F.A.N. 2013. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method Ultrasonics Sonochemistry. 20: 95-98.
Ariedea, M.B., Candidoa, T.M., Jacomea, A.L.M., Velascoa, M.V.R., Carvalhob, J.C.M.d., and Babya, A.R. 2017. Cosmetic attributes of algae - A review Algal Research. 25: 483-487.
Berthon, J.Y., Nachat-Kappes, R., Bey, M., Cadoret, J.P., Renimel, I., and Filaire, E. 2017. Marine algae as attractive source to skin care. Free Radical Research.51: 555-567.
Borowitzka, M.A. 2013. High-value products from microalgae-their development and commercialisation. journal of Applied Phycology. 25: 743-756.
Campos, P.M.B.G.M., Benevenuto, C.G., Calixto, L.S., Melo, M.O., Pereira, K.C., and Gaspar, L.R. 2019. Spirulina, Palmaria palmata, Cichorium intybus, and Medicago sativa extracts in cosmetic formulations: an integrated approach of in vitro toxicity and in vivo acceptability studies. Cutaneous and Ocular Toxicology, pp. 1-25.
Chaiklahana, R., Chirasuwana, N., Lohab, V., Tiab, S., and Bunnag, B. 2018. Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study Biotechnology Reports. 20: 1-41.
Chandra, R., Das, P., Vishal, G., and Nagra, S. 2019. Factors affecting the induction of UV protectant and lipid productivity in Lyngbya for sequential biorefinery product recovery. Bioresource Technology. 278: 303-310.
Daniel, S., Cornelia, S., and Zülli, F. 2017. UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics, pp. 139-143.
Daudt, R.M., Back, P.I., Cardozo, N.S.M., Marczak, L.D.F., and Külkamp-Guerreiro, I.C. 2015. Pinhão starch and coat extract as new natural cosmetic ingredients: Topical formulation stability and sensory analysis. Carbohydrate Polymers. 134: 573-580.
Dianursanti, Prakasa, M.B., and Nugroho, P. 2020. The Effect of Adding Microalgae Extract Spirulina platensis Containing Flavonoid in The Formation of Sunscreen towards Cream Stability and SPF Values AIP Conference Proceedings, pp 040022-040021.
Dewi, N., Kurniasih, A., and Purnamayanti, 2018. Physical Properties of Spirulina Phycocyanin Microencapsulated with Maltodextrin and Carrageenan. Philippine Journal of Science. 147: 201-207.
Dutra, E.A., Oliveira, D.A.G.d.C.e., KedorHackmann, E.R.M., and Santoro, M.I.R.M. 2004. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Brazilian Journal of Pharmaceutical Sciences Brazilian Journal of Pharmaceutical Sciences. 40: 382-385.
El-Bakya, H.H.A., and El-Baroty, G.S., 2012. Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food & Function. 3: 381-388.
Estrada, J.P., Bescos, P.B., and Del Fresno, A.V. 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco. 56: 497-500.
Grant, C.S., and Louda, J.W. 2013. Scytonemin-imine, a mahogany-colored UV/Vis sunscreen of cyanobacteria exposed to intense solar radiation
Cidya. Organic Geochemistry Journal. 65: 29-36.
Gunes, S., Tamburaci, S., Dalay, M.C., and Gurhan, I.D. 2017. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healingand antioxidant activities. Parmacutical biology. 55: 1824-1832.
Hossya, B.H., Leitão, A.A.C., Santos, E.P.d., Matsuda, M., Rezende, L.B., Rurr, J.S.C., Pinto, A.V., Ramos-e-Silvaa, M., Pádula, M.d., and Miguel, N.C.d.O. 2017. Phototoxic assessment of a sunscreen formulation and its excipients: An in vivo and in vitrostud. Journal of Photochemistry & Photobiology, B: Biology. 173: 545-550.
Jiang-Gong Liu, Shin-YiLee, C.W., Yaju Chuang, and Chih-Cheng Lin. 2011. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochemistry.46: 1405-1410.
Lee, J.J., Kim, K.B., Heo, J., Cho, D.H., Kim, H.S., Han, S.H., Ahn, K.J., An, I.S., An, S., and Bae, S. 2017. Protective effect of Arthrospira platensis extracts against ultraviolet B induced cellular senescence through inhibition of DNA damage and matrix metalloproteinase-1 expression in human dermal fibroblasts  Journal of Photochemistry & Photobiology, B: Biology. 16: 1011-1344.
MacColl, R., and Guard-Friar, D. 1987. Phycobiliproteins, Environment & Agriculture. 18 January 2018, Boca Raton  London  New York, pp. 224.
Madhyastha, H.K., Sivashankari, S., and Vatsala, T.M. 2009. C-phycocyanin from Spirulina fussiformis exposed to blue light demonstrates higher efficacy of in vitro antioxidant activity. Biochemical Engineering Journal.43: 221-224.
Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., and Jing, K. 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent Emmanuel. Biochemical Engineering Journal. 109: 282-296.
Mapoung, S., Arjsri, P., Thippraphan, P., Semmarath, W., Yodkeeree, S., Chiewchanvit, S., Piyamongkol, W.,and Dejkriengkraikul, P.L., 2020. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblast. South African Journal of Botany 130: 198-207.
Martínez-Galero, E., Pérez-Pastén, R., Perez-Juarez, A., Fabila-Castillo,L., Gutiérrez-Salmeán, G., and Chamorro, G. 2015. Preclinical antitoxicproperties of Spirulina (Arthrospira). Pharmaceutical Biology. 54: 1345-1353.
Mohammed, H., AmyHolmes, Y., Haridass, N., Sanchez, I.Y., Hauke, W., Studier, E., Grice, J.A.E., Benson, H.S., and Roberts, M. 2019. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. Journal of Investigative Dermatology. 139: 308-315.
Morone, J., Alfeus, A., Vasconcelos, V., and Martins, R. 2019. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals - A new bioactive approach. Algal Research. 41: 101541.
Nichols, J.A., and Katiyar, S.K. 2010. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res, pp. 71-83.
Ogbonda, Kemka, Aminigo, Rebecca, Abu, Gideon, 2007. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource technology. 98: 2207-2211.
Palanisamy, M., Töpfl, S., Berger, R.G., and Hertel, C. 2019. Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures. European Food Research and Technology. 245: 1889-1898.
Pathaka, J., Ahmeda, H., Rajneesha, Singhb, S.P., Häderc, D.P., and Sinha, R.P. 2019. Genetic regulation of scytonemin and mycosporine-like amino acids (MAAs) biosynthesis in cyanobacteria. Plant Gene. 17: 100172.
Pratama, G.M.C.T., Hartawan, I.G.B.R.M., Indriani, I.G.T., Yusrika, M.U., Suryantari, S.A.A., Satyarsa, A.B.S., and Sudarsa, P.S.S. 2020. Potensi Ekstrak Spirulina platensis sebagai Tabir Surya terhadap Paparan Ultraviolet B. Journal of Medicine and Health. 2: 2442-5257.
Rastogi, R.P., and Incharoensakdi, A.2014. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochemical & Photobiological Sciences. 13: 1016-1024.
Rastogi, P., Madamwar, R., Nakamoto, D., and AranIncharoensakdi, H. 2020. Resilience and self-regulation processes of microalgae under UV radiationstress. Journal of Photochemistryand Photobiology C: Photochemistry Reviews. 43: 100322.
Rodrigues, L.R., and Jose, J. 2020. Exploring the photo protective potential of solid lipid nanoparticle-based sunscreen cream containing Aloe vera. Environmental Science and Pollution  Research. 27: 20876-20888.
Rodrigues, R.D.P., Castro, F.C.d., Santiago-Aguiar, R.S.d., and Rocha, M.V.P. 2018. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Research. 31: 454-462.
Rodrigues, R.D.P., Lima, P.F.d., Santiago-Aguiar, R.S.d., and Rocha, M.V.P. 2019. Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis Algal Research. 38: 101391.Santhakumaran, P., Ayyappan, S.M., and Ray, J.G.
2020. Nutraceutical applications of twenty-five species of rapid-growing greenmicroalgae as indicated by their antibacterial, antioxidant and mineral content Algal Research. 47: 1-12.
Schulze, C., Strehle, A., Merdivan, S., and Mundt, S. 2017. Carbohydrates in microalgae: Comparative determination by TLC, LC-MS without derivatization, and the photometric thymol-sulfuric acid method. Algal Research. 25: 372-380.
Shalaby, E.A., and Shanab, S.M.M. 2013. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. indian journal of geo-marine sciennces. 42: 556-564.
Shetty, P.K., Venuvanka, V., Jagani, H.V., Chethan, G.h., Ligade, V.S., Musmade, P.B., Nayak, U.Y., Reddy, M.S., Kalthur, G., Udupa, N., Rao, C.M., and Mutalik, S. 2015. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International Journal of Nanomedicine. 10: 6477-6491.
Shweta, K., and Swarnlata, S. 2010. Formulation and Evaluation of Moisturizer Containing Herbal Extracts for the Management of  Dry Skin Pharmacognosy Journal. 2: 409-417.
Silva, A.d.S.e., Moreira, L.M., Magalhães, W.T.d., Farias, W.R.L., Rocha, M.V.P., and Bastos, A.K.P. 2016. Extraction of Biomolecules from Spirulina platensis using Non-Conventional Processes and Harmless Solvents journal of Enviornmental chemical engineering. 17: 1-26.
Singh, S.P., Klisch, M., Sinha, R.P., and Häder, D.P. 2010. Genome mining of mycosporine-like amino acid (MAAs) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study. Genomics. 95: 120-128.
Sinha, R.P., and Hader, D.P. 2008.UV-protectants in cyanobacteria Plant Science. 174: 278-289.Souza, C., and Campos, P.M.B.G.M.
2017. Development and photoprotective effect of a sunscreen containing the antioxidants Spirulina and dimethylmethoxy chromanol on sun-induced skin damage. European Journal of Pharmaceutical Sciences. 104: 52-64.
Stolz, P., and Obermayer, B. 2005. Manufacturing microalgae for skin care. Cosmetic Toiletries. 120: 99-106.
Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., and Kuča, K. 2016.The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 90: 1817-1840.
Yang, S.I., Liu, S., Brooks, G.J., Lanctot, Y., and Gruber, J.V. 2017. Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. journal of cosmetic Dermatology. 17: 218-522.