The effects of brown seaweed derived fucoidan on growth, immune system, antioxidant defence of aquatics

Document Type : scientific research article

Authors

1 Corresponding Author, Animal ‌Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran

2 Associate Prof., Dept. of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Nowadays, the use of immune supplements in aquaculture has become a serious need due to the high prevalence of diseases. For a long time, researchers have been interested in finding suitable, economical and environmentally safe immunostimulant. It is necessary to use these stimulants as feed or water additives to strengthen the immune system and increase resistance to challenging pathogens. Probiotics, prebiotics, plant extracts, micro and macroalgae and essential oils have been widely evaluated in aquaculture. Brown algae are a large group of algae that are widely distributed in marine environments. Fucoidan is a sulfated polysaccharide isolated from brown seaweed. Due to its numerous physiological and biological properties, it has attracted the attention of many researchers. Fucoidan extracted from brown algae has various biological functions, including anti-inflammatory, immunomodulatory, antitumor, antibacterial, antiviral, anticoagulant, antioxidant, and growth promoter. Given the biological functions of fucoidan, the present paper reviewed the effects on growth, antioxidant capacity and disease resistance in various aquatic animals.

Keywords

Main Subjects


1.Klinger, D., and Naylor, R. 2012. Searching for solutions in aquaculture: charting a sustainable course. Annual Review of Environment and Resources, 37: 247-276.
2.Ahmad, A.L., Chin, J.Y., Harun, M.H.Z.M., and Low, S.C. 2022. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553.
3.Lattos, A., Giantsis, I.A., Tsavea, E., Kolygas, M., Athanassopoulou, F., and Bitchava, K. 2022. Virulence Genes and In Vitro Antibiotic Profile of Photobacterium damselae Strains, Isolated from Fish Reared in Greek Aquaculture Facilities. Animals,
12: 22. 3133.
4.Hoseinifar, S.H., Hosseini, M., Paknejad, H., Safari, R., Jafar, A., Yousefi, M., Van Doan, H., and Mozanzadeh, M.T. 2019. Enhanced mucosal immune responses, immune related genes and growth performance in common carp (Cyprinus carpio) juveniles fed dietary Pediococcus acidilactici MA18/5M and raffinose. Developmental & Comparative Immunology, 94: 59-65.
5.Farsani, M.N., Hoseinifar, S.H., Rashidian, G., Farsani, H.G., Ashouri, G., and Van Doan, H. 2019. Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 91: 233-240.
6.Gogoi, S., Mandal, S.C., and Patel, A.B. 2018. Effect of dietary Wolffia arrhiza and Spirulina platensis on growth performance and pigmentation of Queen loach Botia dario (Hamilton, 1822). Aquaculture Nutrition, 24: 1. 285-291.
7.Rouhani, E., Safari, R., Imanpour, M.R., Hoseinifar, S.H., Yazici, M., and El-Haroun, E. 2022. Effect of Dietary Administration of Green Macroalgae (Ulva intestinalis) on Mucosal and Systemic Immune Parameters, Antioxidant Defence, and Related Gene Expression in Zebrafish (Danio rerio). Aquaculture Nutrition, 2022.
8.Hentati, F., Tounsi, L., Djomdi, D., Pierre, G., Delattre, C., Ursu, A.V., Fendri, I., Abdelkafi, S., and Michaud, P. 2020. Bioactive polysaccharides from seaweeds. Molecules, 25: 14. 3152.
9.de Jesus Raposo, M.F., De Morais, A.M.B., and De Morais, R.M.S.C. 2015. Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13: 5. 2967-3028.
10.Ruocco, N., Costantini, S., Guariniello, S., and Costantini, M. 2016. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules, 21: 5. 551.
11.García-Vaquero, M., Rajauria, G., O’Doherty, J.V, and Sweeney, T. 2017. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Research International, 99: 1011–1020.
12.Venkatesan, J., Anil, S., Rao, S., Bhatnagar, I., and Kim, S.K. 2019. Sulfated polysaccharides from macroalgae for bone tissue regeneration. Current Pharmaceutical Design, 25: 11. 1200-1209.
13.Li, J., Cai, C., Yang, C., Li, J., Sun, T., and Yu, G. 2019. Recent advances in pharmaceutical potential of brown algal polysaccharides and their derivatives. Current Pharmaceutical Design, 25: 11. 1290-1311.
14.Li, B., Lu, F., Wei, X., and Zhao, R. 2008. Fucoidan: structure and bioactivity. Molecules, 13: 8. 1671-1695.
15.Chollet, L., Saboural, P., Chauvierre, C., Villemin, J.N., Letourneur, D., and Chaubet, F. 2016. Fucoidans in nanomedicine. Marine Drugs, 14: 8. 145.
16.Ustyuzhanina, N.E., Bilan, M.I., Ushakova, N.A., Usov, A.I., Kiselevskiy, M.V., and Nifantiev, N.E. 2014. Fucoidans: Pro-or antiangiogenic agents? Glycobiology, 24: 12. 1265-1274.
17.Pomin, V.H. 2012. Fucanomics and galactanomics: Marine distribution, medicinal impact, conceptions, and challenges. Marine Drugs, 10: 4. 793-811.
18.Michel, G., Tonon, T., Scornet, D., Cock, J.M., and Kloareg, B. 2010. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 188: 1. 82-97.
19.Deniaud-Bouët, E., Kervarec, N., Michel, G., Tonon, T., Kloareg, B., and Hervé, C. 2014. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Annals of Botany, 114: 6. 1203-1216.
20.Vilela-Silva, A.C.E.S., Castro, M.O., Valente, A.P., Biermann, C.H., and Mourao, P.A.S. 2002. Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus pallidus ensure species-specific fertilization. Journal of Biological Chemistry, 277: 1. 379-387.
21.Mourão, P.A.S., and Bastos, I.G. 1987. Highly acidic glycans from sea cucumbers: Isolation and fractionation of fucose‐rich sulfated polysaccharides from the body wall of Ludwigothurea grisea. European Journal of Biochemistry, 166: 3. 639-645.
22.Kopplin, G., Rokstad, A.M., Mélida, H., Bulone, V., Skjåk-Bræk, G., and Aachmann, F.L. 2018. Structural characterization of fucoidan from Laminaria hyperborea: Assessment of coagulation and inflammatory properties and their structure–function relationship. ACS Applied Bio Materials, 1: 6. 1880-1892.
23.Khanzadeh, M., Vazirzadeh, A., and Farhadi, A. 2020. Effect of Extract and Fucoidan of Sargassum sp. on Growth, biochemical, Immunity and antioxidant Parameters of Nile Tilapia (Oreochromis niloticus). Iranian Scientific Fisheries Journal, 29: 4. 97-108.
24.Luo, D., Yuan, X., Zeng, Y., Nie, K., Li, Z., and Wang, Z. 2016. Structure elucidation of a major fucopyranose-rich heteropolysaccharide (STP-II) from Sargassum thunbergii. Carbohydrate Polymers, 143: 1-8.
25.Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. 2011. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs, 9: 10. 2106-2130.
26.Nagaoka, M., Shibata, H., Kimura-Tagaki, I., Hashimoto, S., Aiyama, R., Ueyama, S., and Yokokura, T. 2000. Anti-ulcer effects and biological activities of polysaccharides from marine algae. Biofactors, 12: 1/4. 267-274.
27.Zayed, A., El-Aasr, M., Ibrahim, A.R.S., and Ulber, R. 2020. Fucoidan characterization: Determination of purity and physicochemical and chemical properties. Marine Drugs, 18: 11. 571.
28.Abdel-Latif, H.M.R., Dawood, M.A.O., Alagawany, M., Faggio, C., Nowosad, J., and Kucharczyk, D. 2022. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish & Shellfish Immunology.
29.Kloareg, B., and Quatrano, R.S. 1988. Structure of the cell walls of marine algae and ecophysiological functions
of the matrix polysaccharides. Oceanography and marine biology: an annual review. 26: 259-315.
30.Lim, S.J., Aida, W.M.W., Maskat, M.Y., Latip, J., Badri, K.H., Hassan, O., and Yamin, B.M. 2016. Characterisation of fucoidan extracted from Malaysian Sargassum binderi. Food Chemistry, 209: 267-273.
31.Peranginangin, R., and Saepudin, E. 2015. Purification and characterization of fucoidan from the brown seaweed Sargassum binderi Sonder. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 10: 2. 79-87.
32.Wang, C.Y., Wu, T.C., Hsieh, S.L., Tsai, Y.H., Yeh, C.W., and Huang, C.Y. 2015. Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium. Journal of Food and Drug Analysis, 23: 4. 766-777.
33.Usoltseva, R.V., Anastyuk, S.D., Shevchenko, N.M., Surits, V.V., Silchenko, A.S., Isakov, V.V., Zvyagintseva, T.N., Thinh, P.D., and Ermakova, S.P. 2017. Polysaccharides from brown algae Sargassum duplicatum: the structure and anticancer activity in vitro. Carbohydrate Polymers, 175: 547-556.
34.Silchenko, A.S., Rasin, A.B., Kusaykin, M.I., Kalinovsky, A.I., Miansong, Z., Changheng, L., Malyarenko, O.,
Zueva, A.O., Zvyagintseva, T.N., and Ermakova, S.P. 2017. Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydrate Polymers, 175: 654-660.
35.Palanisamy, S., Vinosha, M., Marudhupandi, T., Rajasekar, P., and Prabhu, N.M. 2017. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. International Journal of Biological Macromolecules, 102: 405-412.
36.Hanjabam, M.D., Kumar, A., Tejpal, C.S., Krishnamoorthy, E., Kishore, P., and Kumar, K.A. 2019. Isolation of crude fucoidan from Sargassum wightii using conventional and ultra-sonication extraction methods. Bioactive Carbohydrates and Dietary Fibre, 20: 100200.
37.Purbomartono, C., and Isnansetyo, A. 2019. Dietary fucoidan from Padina boergesenii to enhance non-specific immune of catfish (Clarias sp.). Journal of Biological Sciences, 19: 2. 173-180.
38.Sharma, P.P., and Baskaran, V. 2021. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Research, 54: 102187.
39.El-Kassas, H.Y., and Ghobrial, M.G. 2017. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against “Oscillatoria simplicíssima.” Environmental Science and Pollution Research, 24: 7837-7849.
40.Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., and Usov, A.I. 2004. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydrate Research, 339: 3. 511-517.
41.Kuznetsova, T.A., Besednova, N.N., Mamaev, A.N., Momot, A.P., Shevchenko, N.M., and Zvyagintseva, T.N. 2003. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bulletin of Experimental Biology and Medicine, 136: 5. 471-473.
42.Bilan, M.I., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., and Usov, A.I. 2006. Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydrate Research, 341: 2. 238-245.
43.Béress, A., Wassermann, O., Bruhn, T., Béress, L., Kraiselburd, EN., Gonzalez, L.V., de Motta, G.E., and Chavez, P.I. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. Journal of Natural Products, 56: 4. 478-488.
44.Salehpour, R., Biuki, N.A., Mohammadi, M., Dashtiannasab, A., and Ebrahimnejad, P. 2021. The dietary effect of fucoidan extracted from brown seaweed, Cystoseira trinodis (C. Agardh) on growth and disease resistance to WSSV in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 119: 84-95.
45.Lim, S.J., Aida, W.M.W., Maskat, M.Y., Latip, J., Badri, K.H., Hassan, O., and Yamin, B.M. 2016. Characterisation of fucoidan extracted from Malaysian Sargassum binderi. Food Chemistry, 209: 267-273.
46.Bilan, M.I., Grachev, A.A., Shashkov, A.S., Thuy, T.T.T., Van, T.T.T., Ly, B.M., Nifantiev, N.E., and Usov, A.I. 2013. Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum. Carbohydrate Research, 377: 48-57.
47.Zvyagintseva, T.N., Shevchenko, N.M., Chizhov, A.O., Krupnova, T.N., Sundukova, E.V, and Isakov, V.V. 2003. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. Journal of Experimental Marine Biology and Ecology, 294: 1. 1-13.
48.Yang, C., Chung, D., Shin, I.S., Lee, H., Kim, J., Lee, Y., and You, S. 2008. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43: 5. 433-437.
49.Kawamoto, H., Miki, Y., Kimura, T., Tanaka, K., Nakagawa, T., Kawamukai, M., and Matsuda, H. 2006. Effects of fucoidan from Mozuku on human stomach cell lines. Food Science and Technology Research, 12: 3. 218-222.
50.Rodriguez-Jasso, R.M., Mussatto, S.I., Pastrana, L., Aguilar, C.N., and Teixeira, J.A. 2011. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86: 3. 1137-1144.
51.Wijesinghe, W., and Jeon, Y.J. 2012. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia, 83: 1. 6-12.
52.Kadam, S.U., O’Donnell, C.P., Rai, D.K., Hossain, M.B., Burgess, C.M., Walsh, D., and Tiwari, B.K. 2015. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Marine Drugs, 13: 7. 4270-4280.
53.Rodríguez-Jasso, R.M., Mussatto, S.I., Pastrana, L., Aguilar, C.N., and Teixeira, J.A. 2013. Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 25: 31-39.
54.Wang, J., Zhang, Q., Zhang, Z., and Li, Z. 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42: 2. 127-132.
55.Qu, G., Liu, X., Wang, D., Yuan, Y.I., and Han, L. 2014. Isolation and characterization of fucoidans from five brown algae and evaluation of their antioxidant activity. Journal of Ocean University of China, 13: 851-856.
56.Hifney, A.F., Fawzy, M.A., Abdel-Gawad, K.M., and Gomaa, M. 2016. Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocolloids, 54: 77-88.
57.Saravana, P.S., Cho, Y.J., Park, Y.B., Woo, H.C., and Chun, B.S. 2016. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydrate Polymers, 153: 518-525.
58.Huang, C.Y., Wu, S.J., Yang, W.N., Kuan, A.W., and Chen, C.Y. 2016. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food Chemistry, 197: 1121-1129.
59.Zhang, W., Oda, T., Yu, Q., and Jin, J.O. 2015. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Marine Drugs, 13: 3. 1084-1104.
60.Jin, J.O., Zhang, W., Du, J.Y., Wong, K.W., Oda, T., and Yu, Q. 2014. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PloS One, 9: 6. e99396.
61.Choi, E.M., Kim, A.J., Kim, Y.O., and Hwang, J.K. 2005. Immunomodulating activity of arabinogalactan and fucoidan in vitro. Journal of Medicinal Food, 8: 4. 446-453.
62.El-Boshy, M., El-Ashram, A., Risha, E., Abdelhamid, F., Zahran, E., and Gab-Alla, A. 2014. Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinus, immunosuppressed by cadmium chloride. Veterinary Immunology and Immunopathology, 162: 3-4. 168-173.
63.Peixoto, M.J., Salas-Leitón, E., Pereira, L.F., Queiroz, A., Magalhães, F., Pereira, R., Abreu, H., Reis, P.A., Gonçalves, J.F.M., and de Almeida Ozório, R.O. 2016. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquaculture Reports, 3: 189-197.
64.Prabu, D.L., Sahu, N.P., Pal, A.K., Dasgupta, S., and Narendra, A. 2016. Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquaculture Research, 47: 1. 199-218.
65.Yang, Q., Yang, R., Li, M., Zhou, Q., Liang, X., and Elmada, Z.C. 2014. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology, 41: 2. 264-270.
66.Sony, N.M., Ishikawa, M., Hossain, M.S., Koshio, S., and Yokoyama, S. 2019. The effect of dietary fucoidan on growth, immune functions, blood characteristics and oxidative stress resistance of juvenile red sea bream, Pagrus major. Fish Physiology and Biochemistry, 45: 439-454.
67.Isnansetyo, A., Fikriyah, A., and Kasanah, N. 2016. Non-specific immune potentiating activity of fucoidan from a tropical brown algae (Phaeophyceae), Sargassum cristaefolium in tilapia (Oreochromis niloticus). Aquaculture International, 24: 465-477.
68.Mir, I.N., Sahu, N.P., Pal, A.K., and Makesh, M. 2017. Synergistic effect of l-methionine and fucoidan rich extract in eliciting growth and non-specific immune response of Labeo rohita fingerlings against Aeromonas hydrophila. Aquaculture, 479: 396-403.
69.Huang, X., Zhou, H., and Zhang, H. 2006. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 20: 5. 750-757.
70.Traifalgar, R.F., Kira, H., Thanh Tung, H.A., Raafat Michael, F., Laining, A., Yokoyama, S., IShikawa, M., Koshio, S., Serrano, A.E., and Corre, V. 2010. Influence of dietary fucoidan supplementation on growth and immunological response of juvenile Marsupenaeus japonicus. Journal of the World Aquaculture Society, 41: 235-244.
71.Immanuel, G., Sivagnanavelmurugan, M., Marudhupandi, T., Radhakrishnan, S., and Palavesam, A. 2012. The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish & Shellfish Immunology, 32: 4. 551-564.
72.Arizo, M.A.M., Simeon, E.C., Layosa, M.J.T., Mortel, R.M.M., Pineda, C.M.B., Lim, J.J.E., and Maningas, M.B.B. 2015. Crude fucoidan from Sargassum polycystum stimulates growth and immune response of Macrobrachium rosenbergii against white spot syndrome virus (WSSV). Aquaculture, Aquarium, Conservation & Legislation, 8: 4. 535-543.
73.Lee, K.W., and Lee, H.J. 2006. Biphasic effects of dietary antioxidants on oxidative stress-mediated carcinogenesis. Mechanisms of Ageing and Development, 127: 5. 424-431.
74.Lee, S.H., Kang, M.C., Moon, S.H., Jeon, B.T., and Jeon, Y.J. 2013. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae, 28: 4. 371-378.
75.Wang, X., Yi, K., and Zhao, Y. 2018. Fucoidan inhibits amyloid-β-induced toxicity in transgenic Caenorhabditis elegans by reducing the accumulation of amyloid-β and decreasing the production of reactive oxygen species. Food & Function, 9: 1. 552-560.
76.Wei, H., Gao, Z., Zheng, L., Zhang, C., Liu, Z., Yang, Y., Teng, H., Hou, L., Yin, Y., and Zou, X. 2017. Protective effects of fucoidan on Aβ25–35 and d-Gal-induced neurotoxicity in PC12 cells and d-Gal-induced cognitive dysfunction in mice. Marine Drugs, 15: 3. 77.
77.Laihao, L., Changhu, X.U.E., Yong, X.U.E., Zhaojie, L.I., and Xueyan, F. 2006. The effects of fucoidans from Laminaria japonica on AAPH mediated oxidation of human low-density lipoprotein. Acta Oceanologica Sinica, 4: 124-130.
78.Kim, E.A., Lee, S.H., Ko, C., Cha, S.H., Kang, M.C., Kang, S.M., Ko, S.C., Lee, W.W., Ko, J.Y., and Lee, J.H. 2014. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydrate Polymers, 102: 185-191.
79.Abdel-Daim, M.M., Dawood, M.A.O., Aleya, L., and Alkahtani, S. 2020. Effects of fucoidan on the hematic indicators and antioxidative responses of Nile tilapia (Oreochromis niloticus) fed diets contaminated with aflatoxin B 1. Environmental Science and Pollution Research, 27: 11. 12579-12586.
80.Sivagnanavelmurugan, M., Thaddaeus, B.J., Palavesam, A., and Immanuel, G. 2014. Dietary effect of Sargassum wightii fucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodon and immune resistance to Vibrio parahaemolyticus. Fish & Shellfish Immunology, 39: 2. 439-449.
81.Tuller, J., De Santis, C., and Jerry, D.R. 2014. Dietary influence of Fucoidan supplementation on growth of Lates calcarifer (Bloch). Aquaculture Research, 45: 4. 749-754.
82.Mahgoub, H.A., El-Adl, M.A.M., Ghanem, H.M., and Martyniuk, C.J. 2020. The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 46: 2109-2131.
83.Ramazanov, Z., Jimenez del Rio, M., and Ziegenfuss, T. 2003. Sulfated polysaccharides of brown seaweed Cystoseira canariensis bind to serum myostatin protein. Acta Physiologica et Pharmacologica Bulgarica, 27: 2-3. 101-106.
84.Ozorio, R.A., Lopes, R.G., Goes, B.S., da SILVA, C.P., Derner, R.B., and Fracalossi, D.M. 2015. Growth and enzymatic profile of the pacific white shrimp fed with Porphyridium cruentum extract. Boletim Do Instituto de Pesca, 41: 1. 123-131.
85.Sajina, K.A., Sahu, N.P., Varghese, T., and Jain, K.K. 2019. Fucoidan-rich Sargassum wightii extract supplemented with α-amylase improve growth and immune responses of Labeo rohita (Hamilton, 1822) fingerlings. Journal of Applied Phycology, 31: 2469-2480.
86.Fabrini, B.C., Braga, W.F., Andrade, E.S., Paula, D., and Paulino, R. 2017. Sulfated polysaccharides in diets for Nile tilapia (Oreochromis niloticus) in the initial growth phase. J. Aquac. Res. Development, 8: 477. 2.
87.Jabłonowska, E., Pulik, P., Kalinowska, A., Gąsiorowski, J., Parczewski, M., Bociąga‐Jasik, M., Pulik, Ł., Siwak, E., and Wójcik, K. 2017. Efficacy and safety of nucleoside‐sparing regimen based on raltegravir and ritonavir‐boosted darunavir in HIV‐1‐infected treatment‐experienced patients. Journal of Medical Virology, 89: 12. 2122-2129.
88.Nakanishi, T., Kiryu, I., and Ototake, M. 2002. Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine, 20: 31-32. 3764-3769.
89.Zhu, F. 2020. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture, 526: 735422.
90.Kitikiew, S., Chen, J.C., Putra, D.F., Lin, Y.C., Yeh, S.T., and Liou, C.H. 2013. Fucoidan effectively provokes the innate immunity of white shrimp Litopenaeus vannamei and its resistance against experimental Vibrio alginolyticus infection. Fish & Shellfish Immunology, 34: 1. 280-290.
91.Ghanbari, M., Kneifel, W., and Domig, K.J. 2015. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture, 448: 464-475.
92.Kumar, M., Kumari, P., Trivedi, N., Shukla, M.K., Gupta, V., Reddy, C.R.K., and Jha, B. 2011. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology, 23: 797-810.
93.Ponce, N.M.A., Pujol, C.A., Damonte, E.B., Flores, M.L., and Stortz, C.A. 2003. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydrate Research, 338: 2. 153-165.
94.Mandal, P., Mateu, C.G., Chattopadhyay, K., Pujol, C.A., Damonte, E.B., and Ray, B. 2007. Structural features and antiviral
activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chemistry and Chemotherapy, 18: 3. 153-162.
95.Takahasi, Y., Uchara, K., Watanabe, R., Okumura, T., Yamashita, T., Omura, H., Yomo, T., Kawano, T., Kanemitsu, A., and Narasaka, H. 1998. Efficacy of oral administration of fucoidan, a sulphated polysaccharide in controlling white spot syndrome in kuruma shrimp in Japan. Advances in Shrimp Biotechnology National Center for Genetic Engineering and Biotechnology, Bangkok, Flegel (Ed), pp. 171-173.
96.Deachamag, P., Intaraphad, U., Phongdara, A., and Chotigeat, W. 2006. Expression of a phagocytosis activating protein (PAP) gene in immunized black tiger shrimp. Aquaculture, 255: 1-4. 165-172.
97.Gora, A.H., Sahu, N.P., Sahoo, S., Rehman, S., Dar, S.A., Ahmad, I., and Agarwal, D. 2018. Effect of dietary Sargassum wightii and its fucoidan-rich extract on growth, immunity, disease resistance and antimicrobial peptide gene expression in Labeo rohita. International Aquatic Research, 10: 115-131.
98.Salehpour, R., Amrollahi Biuki, N., Mohammadi, M., Dashtiannasab, A., and Ebrahimnejad, P. 2022. Effects of fucoidan polysaccharide extracted from seaweed Cystoseira trinodis (C. Agardh, 1820) on immune responses of vannamei shrimp Litopenaeus vannamei (Boone, 1931). Aquatics Physiology and Biotechnology, 9: 4. 35-58.
99.Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., and Song, S. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Mar Drugs. 17: 3. 183.